
Yanan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/59775/publications.pdf Version: 2024-02-01

<u>ΥΛΝΑΝΙΙ</u>

#	Article	IF	CITATIONS
1	Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: general functionality and promising application prospects. Chemical Society Reviews, 2015, 44, 5291-5319.	38.1	306
2	Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catalysis, 2020, 10, 13560-13583.	11.2	124
3	Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes: Improvement of selectivity and anti-coking ability via alloying of Ni and Cu. Journal of Catalysis, 2018, 359, 251-260.	6.2	111
4	Partial hydrogenation of acetylene using highly stable dispersed bimetallic Pd–Ga/MgO–Al2O3 catalyst. Journal of Catalysis, 2014, 309, 166-173.	6.2	92
5	Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. Journal of Catalysis, 2017, 348, 135-145.	6.2	81
6	Palladium phosphide nanoparticles as highly selective catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2018, 364, 406-414.	6.2	80
7	Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: effect of Pd–Cu alloy formation. Catalysis Science and Technology, 2016, 6, 3027-3037.	4.1	76
8	Fabrication of a PdAg mesocrystal catalyst for the partial hydrogenation of acetylene. Journal of Catalysis, 2015, 330, 61-70.	6.2	68
9	Pd/MgAl-LDH nanocatalyst with vacancy-rich sandwich structure: Insight into interfacial effect for selective hydrogenation. Journal of Catalysis, 2019, 370, 107-117.	6.2	62
10	Evolution of palladium sulfide phases during thermal treatments and consequences for acetylene hydrogenation. Journal of Catalysis, 2018, 364, 204-215.	6.2	58
11	Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Applied Catalysis B: Environmental, 2020, 270, 118878.	20.2	53
12	Adsorbate-Induced Structural Evolution of Pd Catalyst for Selective Hydrogenation of Acetylene. ACS Catalysis, 2020, 10, 15048-15059.	11.2	50
13	Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2016, 344, 854-864.	6.2	49
14	Insight into the Role of Unsaturated Coordination O _{2c} -Ti _{5c} -O _{2c} Sites on Selective Glycerol Oxidation over AuPt/TiO ₂ Catalysts. ACS Catalysis, 2019, 9, 188-199.	11.2	45
15	Metal Phosphides and Sulfides in Heterogeneous Catalysis: Electronic and Geometric Effects. ACS Catalysis, 2021, 11, 9102-9127.	11.2	36
16	Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis, 2022, 12, 607-615.	11.2	36
17	Support morphology-dependent alloying behaviour and interfacial effects of bimetallic Ni–Cu/CeO ₂ catalysts. Chemical Science, 2019, 10, 3556-3566.	7.4	34
18	Interfacial Bifunctional Effect Promoted Non-Noble Cu/Fe <i>_y</i> MgO <i>_x</i> Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis, 2021, 11, 11117-11128.	11.2	24

Yanan Liu

#	Article	IF	CITATIONS
19	Insights into the Role of Dual-Interfacial Sites in Cu/ZrO ₂ Catalysts in 5-HMF Hydrogenolysis with Isopropanol. ACS Applied Materials & Interfaces, 2021, 13, 22292-22303.	8.0	20
20	Direct One-Pot Synthesis of Chemically Anisotropic Particles with Tunable Morphology, Dimensions, and Surface Roughness. Langmuir, 2015, 31, 925-936.	3.5	19
21	Highly efficient CuCr-MMO catalyst for a base-free styrene epoxidation with H ₂ O ₂ as the oxidant: synergistic effect between Cu and Cr. Dalton Transactions, 2019, 48, 16402-16411.	3.3	19
22	Oxidation of Aliphatic Alcohols by Using Precious Metals Supported on Hydrotalcite under Solvent― and Baseâ€Free Conditions. ChemSusChem, 2015, 8, 3314-3322.	6.8	18
23	Control of cross-linking and reactions in one-step dispersion polymerization toward particles with combined anisotropies. Polymer Chemistry, 2016, 7, 2728-2739.	3.9	16
24	Control of Local Electronic Structure of Pd Single Atom Catalyst by Adsorbate Induction. Small, 2022, 18, e2103852.	10.0	16
25	Combined chain- and step-growth dispersion polymerization toward PSt particles with soft, clickable patches. Polymer Chemistry, 2017, 8, 1404-1416.	3.9	15
26	Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation. ACS Applied Materials & amp; Interfaces, 2021, 13, 33045-33055.	8.0	15
27	Improvement of Selectivity in Acetylene Hydrogenation with Comparable Activity over Ordered PdCu Catalysts Induced by Post-treatment. ACS Applied Materials & Interfaces, 2021, 13, 706-716.	8.0	15
28	Recent Advances in Constructing Interfacial Active Catalysts Based on Layered Double Hydroxides and Their Catalytic Mechanisms. Transactions of Tianjin University, 2021, 27, 24-41.	6.4	14
29	Pd Nanoparticles Loaded on CoAlCe Layered Double Oxide Nanosheets for Phenol Hydrogenation. ACS Applied Nano Materials, 2021, 4, 11820-11829.	5.0	13
30	A ternary Ag–TiO ₂ /reduced graphene oxide nanocomposite as the anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 2126-2134.	6.0	10
31	Preparation of AuPd/ZnO–CuO for the directional oxidation of glycerol to DHA. Catalysis Science and Technology, 2020, 10, 6223-6234.	4.1	10
32	Facile and surfactant-free synthesis of supported Pd nanoparticles on hydrotalcite for oxidation of benzyl alcohol. RSC Advances, 2015, 5, 74907-74915.	3.6	8
33	Shape/Crystal Facet of Ceria Induced Well-Dispersed and Stable Au Nanoparticles for the Selective Hydrogenation of Phenylacetylene. Catalysis Letters, 2019, 149, 361-372.	2.6	7
34	Insight into the effect of support crystal form on semi-continuous oxidation of glycerol. Journal of Porous Materials, 2021, 28, 1371-1385.	2.6	5
35	Fabrication of Pd–Au Clusters by In Situ Spontaneous Reduction of Reductive Layered Double Hydroxides. Catalysis Letters, 2021, 151, 2355-2365.	2.6	2
36	Electron-Deficient Pd clusters induced by spontaneous reduction of support defect for selective phenol hydrogenation. Chemical Engineering Science, 2022, 260, 117867.	3.8	2

#	Article	IF	CITATIONS
37	Influence of Active Metal Precursors on the Structure and Catalytic Behavior of Pd/Al2O3 Catalysts for Selective Acetylene Hydrogenation. Catalysis Letters, 0, , 1.	2.6	1
38	Extension of inducing effect of support coordination on Ni-based ordered alloys catalyst for selective hydrogenation. Chemical Engineering Science, 2022, 260, 117852.	3.8	1