
Cristiano Binder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5977136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of nanostructured carbon derived from the solid-state reaction between iron and boron carbide. Materials Chemistry and Physics, 2022, 276, 125396.	4.0	8
2	Effect of low-temperature plasma carburizing on surface topography, mechanical and tribological properties of sintered iron and nitrided sintered iron. Tribology International, 2022, 168, 107452.	5.9	8
3	Tool Wear Effect on Surface Integrity in AISI 1045 Steel Dry Turning. Materials, 2022, 15, 2031.	2.9	7
4	Influence of post-sintering sizing process on the tribological behaviour of self-lubricating iron-based composite. Wear, 2022, 496-497, 204287.	3.1	2
5	An Overview of Highly Porous Titanium Processed via Metal Injection Molding in Combination with the Space Holder Method. Metals, 2022, 12, 783.	2.3	8
6	Controlled addition of air in the gas mixture of plasma nitriding: an analysis of nitrided layer microstructure and microhardness of carbon steels. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, 1.	1.6	0
7	Carbon Structures and Tribological Properties of Fe-C-SiC Self-Lubricating Metal Matrix Composites Prepared with α/β-SiC Polytypes. Lubricants, 2022, 10, 112.	2.9	4
8	Tribological Behavior of Surfaces Obtained by Turning in Sintered Self-Lubricating Composites. Tribology Transactions, 2021, 64, 143-156.	2.0	3
9	Combined Use of Surface Texturing, Plasma Nitriding and DLC Coating on Tool Steel. Coatings, 2021, 11, 201.	2.6	11
10	In situ Tribo-Fluorination for Oil-Less Hermetic Compressor Applications. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	1
11	Tribological Evaluation of Turbostratic 2D Graphite as Oil Additive. Lubricants, 2021, 9, 43.	2.9	7
12	Plasma nitrided compound layers in sintered parts: Microstructures and wear mechanisms. Wear, 2021, 477, 203810.	3.1	11
13	Dry tribological performance of nanostructured 2D turbostratic graphite particles derived from boron and chromium carbides. Wear, 2021, 477, 203842.	3.1	6
14	Effect of Liquid Phase–Assisted Sintering on the Microstructure, Mechanical Properties, and Tribological Behavior of Self‣ubricating Ferrous Composites. Advanced Engineering Materials, 2020, 22, 1900865.	3.5	1
15	Improvement of tribological properties of sintered self-lubricating composites produced by surface Mo-enrichment. Wear, 2020, 442-443, 203123.	3.1	4
16	Study of silicon carbide dissociation into Fe and Fe C matrixes produced by die pressing and sintering. Materials Chemistry and Physics, 2020, 253, 123442.	4.0	9
17	Effect of Cutting Parameters in Machining Force, Surface Texture and Chips Morphology Obtained in Turning of Sintered Self-Lubricating Composites. Materials Research, 2020, 23, .	1.3	6
18	Oxidation Resistance and Microstructure Evaluation of a Polymer Derived Ceramic (PDC) Composite Coating Applied onto Sintered Steel. Materials, 2019, 12, 914.	2.9	8

CRISTIANO BINDER

#	Article	IF	CITATIONS
19	Effect of turning parameters on the surface of sintered self-lubricating composites. International Journal of Advanced Manufacturing Technology, 2019, 101, 3143-3156.	3.0	6
20	Self-Lubricating Composites Enriched in the Surface with Molybdenum and Nickel. Materials Research, 2019, 22, .	1.3	2
21	DLC deposited onto nitrided grey and nodular cast iron substrates: An unexpected tribological behaviour. Tribology International, 2018, 121, 460-467.	5.9	16
22	Influence of Surface Finishing on the Tribological Behavior of Self-Lubricating Iron-Based Composites. Tribology Transactions, 2018, 61, 560-568.	2.0	10
23	Effect of Heat Treatments and SiC Content in the Mechanical Properties and Microstructure of Self-Lubricating Steels. Materials Research, 2018, 21, .	1.3	4
24	In Situ Generated Turbostratic 2D Graphite: A New Way to Obtain High-Performance Self-Lubricating Iron-Based Composites. , 2018, , 181-230.		3
25	Effect of soft substrate topography on tribological behavior of multifunctional DLC coatings. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40, 1.	1.6	10
26	Tribological Behaviour of Plasma-Functionalized Graphene as Low-Viscosity Oil Additive. Tribology Letters, 2018, 66, 1.	2.6	19
27	Assessment of a multifuncional tribological coating (nitride+DLC) deposited on grey cast iron in a mixed lubrication regime. Wear, 2017, 376-377, 803-812.	3.1	13
28	Tribological behaviour of sintered iron based self-lubricating composites. Friction, 2017, 5, 285-307.	6.4	45
29	Corrosion resistance of low-carbon steel modified by plasma nitriding and diamond-like carbon. Diamond and Related Materials, 2017, 80, 153-161.	3.9	30
30	Effect of hexagonal boron nitride and graphite on mechanical and scuffing resistance of self lubricating iron based composite. Wear, 2017, 376-377, 1084-1090.	3.1	43
31	Topography evolution and friction coefficient of gray and nodular cast irons with duplex plasma nitrided + DLC coating. Surface and Coatings Technology, 2017, 314, 18-27.	4.8	23
32	Production of nickel matrix composites reinforced with carbide particles by granulation of fine powders and mechanical pressing. Powder Technology, 2017, 305, 673-678.	4.2	11
33	AISI 1005 Steel Plasma Treated by Different Thermochemical Surface Treatments. Materials Research, 2016, 19, 1049-1056.	1.3	5
34	Effects of Different Plasma Nitrided Layers on the Tribological Performance of DLC Coatings. Materials Research, 2016, 19, 1180-1188.	1.3	18
35	Genesis and stability of tribolayers in solid lubrication: case of pair DLC-stainless steel. Journal of Materials Research and Technology, 2016, 5, 136-143.	5.8	11
36	Effect of Microstructure on the Thermal Properties of Sintered Iron-copper Composites. Materials Research, 2015, 18, 1176-1182.	1.3	13

CRISTIANO BINDER

#	Article	IF	CITATIONS
37	Adjusting the Sintering Cycle of a Hadfield Sintered Steel Produced by Metal Injection Molding. Materials Research, 2015, 18, 83-90.	1.3	5
38	Plasma Carburizing of Sintered Pure Iron at Low Temperature. Materials Research, 2015, 18, 320-327.	1.3	8
39	Effect of temperature and atmosphere on the tribological behavior of a polyether ether ketone composite. Friction, 2015, 3, 259-265.	6.4	5
40	Thermodynamic aspects during the processing of sintered materials. Powder Technology, 2015, 271, 193-203.	4.2	17
41	Development of self-lubricating composite materials of nickel with molybdenum disulfide, graphite and hexagonal boron nitride processed by powder metallurgy: preliminary study. Materials Research, 2014, 17, 180-185.	1.3	23
42	Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribology International, 2014, 70, 119-127.	5.9	50
43	Effect of the metallic matrix on the sliding wear of plasma assisted debinded and sintered MIM self-lubricating steel. Wear, 2013, 301, 648-655.	3.1	36
44	Powder Injection Molding of Multimaterial Parts - Self Lubricating Steel Combined with Plain-Carbon Steel. Materials Science Forum, 2012, 727-728, 243-247.	0.3	0
45	Thermal Stability of the MoS2 Phase in Injection Moulded 17-4 PH Stainless Steel. Journal of Materials Research and Technology, 2012, 1, 134-140.	5.8	21
46	Plasma debinding and sintering of metal injection moulded 17-4PH stainless steel. Materials Research, 2011, 14, 564-568.	1.3	16
47	Effect of precursor content and sintering temperature on the scuffing resistance of sintered self lubricating steel. Wear, 2011, 271, 1862-1867.	3.1	35
48	Effect of Sintering Temperature on the Tribological Behavior of Plasma Assisted Debinded and Sintered MIM Self Lubricating Steels. , 2010, , .		3
49	†Fine tunedâ€ [™] steels point the way to a focused future. Metal Powder Report, 2010, 65, 29-37.	0.1	33
50	Internal lubricant as an alternative to coating steels. Metal Powder Report, 2010, 65, 24-31.	0.1	9
51	Fe-hBN Composites Produced by Double Pressing and Double Sintering. Materials Science Forum, 0, 802, 311-316.	0.3	5
52	Surface Mo or Ni-Enrichment Applied to Granulated Self-Lubricating Composites: Microstructural and Tribological Evaluation. Frontiers in Mechanical Engineering, 0, 8, .	1.8	1