
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976756/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corticocortical innervation subtypes of layer 5 intratelencephalic cells in the murine secondary motor cortex. Cerebral Cortex, 2022, 33, 50-67.	2.9	3
2	Pyramidal cell subtype-dependent cortical oscillatory activity regulates motor learning. Communications Biology, 2021, 4, 495.	4.4	11
3	lpsi- and contralateral corticocortical projection-dependent subcircuits in layer 2 of the rat frontal cortex. Journal of Neurophysiology, 2019, 122, 1461-1472.	1.8	9
4	Control of excitatory hierarchical circuits by parvalbumin-FS basket cells in layer 5 of the frontal cortex: insights for cortical oscillations. Journal of Neurophysiology, 2019, 121, 2222-2236.	1.8	15
5	Differential Striatal Axonal Arborizations of the Intratelencephalic and Pyramidal-Tract Neurons: Analysis of the Data in the MouseLight Database. Frontiers in Neural Circuits, 2019, 13, 71.	2.8	12
6	Semaphorin 6A–Plexin A2/A4 Interactions with Radial Glia Regulate Migration Termination of Superficial Layer Cortical Neurons. IScience, 2019, 21, 359-374.	4.1	20
7	A carbon nanotube tape for serial-section electron microscopy of brain ultrastructure. Nature Communications, 2018, 9, 437.	12.8	53
8	Large Volume Electron Microscopy and Neural Microcircuit Analysis. Frontiers in Neural Circuits, 2018, 12, 98.	2.8	56
9	New neurons use Slit-Robo signaling to migrate through the glial meshwork and approach a lesion for functional regeneration. Science Advances, 2018, 4, eaav0618.	10.3	60
10	Thalamocortical Axonal Activity in Motor Cortex Exhibits Layer-Specific Dynamics during Motor Learning. Neuron, 2018, 100, 244-258.e12.	8.1	63
11	Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron, 2018, 99, 1302-1314.e5.	8.1	131
12	A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine. Frontiers in Neural Circuits, 2018, 12, 111.	2.8	13
13	Pyramidal Cell Subtypes and Their Synaptic Connections in Layer 5 of Rat Frontal Cortex. Cerebral Cortex, 2017, 27, 5755-5771.	2.9	76
14	Segregated Excitatory–Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex. Cerebral Cortex, 2017, 27, 5846-5857.	2.9	36
15	The Diversity of Cortical Inhibitory Synapses. Frontiers in Neural Circuits, 2016, 10, 27.	2.8	115
16	Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex― Science, 2016, 353, 1108-1108.	12.6	24
17	Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cerebral Cortex, 2016, 26, 2689-2704.	2.9	31
18	Cortical Divergent Projections in Mice Originate from Two Sequentially Generated, Distinct Populations of Excitatory Cortical Neurons with Different Initial Axonal Outgrowth Characteristics. Cerebral Cortex, 2016, 26, 2257-2270.	2.9	18

#	Article	IF	CITATIONS
19	Computing rewardâ€prediction error: an integrated account of cortical timing and basalâ€ganglia pathways for appetitive and aversive learning. European Journal of Neuroscience, 2015, 42, 2003-2021.	2.6	12
20	Temporal Structure of Neuronal Activity among Cortical Neuron Subtypes during Slow Oscillations in Anesthetized Rats. Journal of Neuroscience, 2015, 35, 11988-12001.	3.6	20
21	Functional effects of distinct innervation styles of pyramidal cells by fast spiking cortical interneurons. ELife, 2015, 4, .	6.0	68
22	Neural circuits: Japan. Frontiers in Neural Circuits, 2014, 8, 135.	2.8	1
23	Multiple Layer 5 Pyramidal Cell Subtypes Relay Cortical Feedback from Secondary to Primary Motor Areas in Rats. Cerebral Cortex, 2014, 24, 2362-2376.	2.9	67
24	Common excitatory synaptic inputs to electrically connected cortical fast-spiking cell networks. Journal of Neurophysiology, 2013, 110, 795-806.	1.8	29
25	New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 2013, 14, 202-216.	10.2	707
26	Dopaminergic Control of Motivation and Reinforcement Learning: A Closed-Circuit Account for Reward-Oriented Behavior. Journal of Neuroscience, 2013, 33, 8866-8890.	3.6	49
27	Direction- and distance-dependent interareal connectivity of pyramidal cell subpopulations in the rat frontal cortex. Frontiers in Neural Circuits, 2013, 7, 164.	2.8	42
28	Hierarchical Organization of Neocortical Neuron Types. , 2013, , 181-202.		1
29	Functional Significance of Rall's Power of Three Halves Law in Cortical Nonpyramidal Cells. , 2013, , 45-51.		0
30	Specialized Cortical Subnetworks Differentially Connect Frontal Cortex to Parahippocampal Areas. Journal of Neuroscience, 2012, 32, 1898-1913.	3.6	66
31	Differentiated Participation of Thalamocortical Subnetworks in Slow/Spindle Waves and Desynchronization. Journal of Neuroscience, 2012, 32, 1730-1746.	3.6	46
32	Reinforcement learning: computing the temporal difference of values via distinct corticostriatal pathways. Trends in Neurosciences, 2012, 35, 457-467.	8.6	71
33	Conserved properties of dendritic trees in four cortical interneuron subtypes. Scientific Reports, 2011, 1, 89.	3.3	55
34	Selective Coexpression of Multiple Chemical Markers Defines Discrete Populations of Neocortical GABAergic Neurons. Cerebral Cortex, 2011, 21, 1803-1817.	2.9	209
35	Electrophysiological characteristics of inhibitory neurons of the prepositus hypoglossi nucleus as analyzed in Venus-expressing transgenic rats. Neuroscience, 2011, 197, 89-98.	2.3	12
36	Highly Differentiated Projection-Specific Cortical Subnetworks. Journal of Neuroscience, 2011, 31, 10380-10391.	3.6	144

#	Article	IF	CITATIONS
37	Cell Diversity and Connection Specificity between Callosal Projection Neurons in the Frontal Cortex. Journal of Neuroscience, 2011, 31, 3862-3870.	3.6	70
38	Serotonin Modulates Fast-Spiking Interneuron and Synchronous Activity in the Rat Prefrontal Cortex through 5-HT _{1A} and 5-HT _{2A} Receptors. Journal of Neuroscience, 2010, 30, 2211-2222.	3.6	172
39	Cerebral Cortex: Inhibitory Cells. , 2009, , 775-783.		Ο
40	Important factors for the three-dimensional reconstruction of neuronal structures from serial ultrathin sections. Frontiers in Neural Circuits, 2009, 3, 4.	2.8	30
41	Cortical Inhibitory Cell Types Differentially Form Intralaminar and Interlaminar Subnetworks withExcitatory Neurons. Journal of Neuroscience, 2009, 29, 10533-10540.	3.6	91
42	Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8428-8433.	7.1	90
43	Firing-Pattern-Dependent Specificity of Cortical Excitatory Feed-Forward Subnetworks. Journal of Neuroscience, 2008, 28, 11186-11195.	3.6	78
44	Quantitative Chemical Composition of Cortical GABAergic Neurons Revealed in Transgenic Venus-Expressing Rats. Cerebral Cortex, 2008, 18, 315-330.	2.9	214
45	Neocortical Inhibitory Terminals Innervate Dendritic Spines Targeted by Thalamocortical Afferents. Journal of Neuroscience, 2007, 27, 1139-1150.	3.6	154
46	Heterogeneity of Phasic Cholinergic Signaling in Neocortical Neurons. Journal of Neurophysiology, 2007, 97, 2215-2229.	1.8	176
47	Phasic cholinergic signaling in the hippocampus: Functional homology with the neocortex?. Hippocampus, 2007, 17, 327-332.	1.9	41
48	Dendritic Branch Typing and Spine Expression Patterns in Cortical Nonpyramidal Cells. Cerebral Cortex, 2006, 16, 696-711.	2.9	102
49	Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex. Journal of Neuroscience, 2006, 26, 4394-4405.	3.6	257
50	Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes. Journal of Neuroscience, 2004, 24, 2853-2865.	3.6	180
51	Local Circuit Neurons in the Frontal Cortico-Striatal System. , 2003, , 125-148.		4
52	Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of Neurocytology, 2002, 31, 277-287.	1.5	366
53	Slow synchronized bursts of inhibitory postsynaptic currents (0.1–0.3 Hz) by cholinergic stimulation in the rat frontal cortex in vitro. Neuroscience, 2001, 107, 551-560.	2.3	26
54	Distinct Firing Patterns of Neuronal Subtypes in Cortical Synchronized Activities. Journal of Neuroscience, 2001, 21, 7261-7272.	3.6	95

#	Article	IF	CITATIONS
55	Dependence of GABAergic Synaptic Areas on the Interneuron Type and Target Size. Journal of Neuroscience, 2000, 20, 375-386.	3.6	136
56	Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience, 1998, 85, 677-701.	2.3	264
57	Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex. Journal of Neuroscience, 1998, 18, 6963-6976.	3.6	205
58	Dopamine D ₁ -Like Receptor Activation Excites Rat Striatal Large Aspiny Neurons <i>In Vitro</i> . Journal of Neuroscience, 1998, 18, 5180-5190.	3.6	140
59	Cortical GABAergic Neural Circuits The Brain & Neural Networks, 1998, 5, 171-177.	0.1	Ο
60	Neostriatal cell subtypes and their functional roles. Neuroscience Research, 1997, 27, 1-8.	1.9	234
61	GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 1997, 7, 476-486.	2.9	1,249
62	The morphological and chemical characteristics of striatal neurons immunoreactive for the α1-subunit of the GABAA receptor in the rat. Neuroscience, 1997, 80, 775-792.	2.3	27
63	Selective Cholinergic Modulation of Cortical GABAergic Cell Subtypes. Journal of Neurophysiology, 1997, 78, 1743-1747.	1.8	218
64	Two distinct subgroups of cholecystokinin-immunoreactive cortical interneurons. Brain Research, 1997, 752, 175-183.	2.2	85
65	Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex. Journal of Neuroscience, 1996, 16, 2701-2715.	3.6	336
66	Actions of Substance P on Rat Neostriatal Neurons <i>In Vitro</i> . Journal of Neuroscience, 1996, 16, 5141-5153.	3.6	81
67	The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. Journal of Neuroscience, 1996, 16, 2397-2410.	3.6	680
68	Substance P Excites Large Aspiny Neurons of the Rat Neostriatum. Advances in Behavioral Biology, 1996, , 151-156.	0.2	0
69	Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. Journal of Neuroscience, 1995, 15, 2638-2655.	3.6	478
70	Striatal interneurones: chemical, physiological and morphological characterization. Trends in Neurosciences, 1995, 18, 527-535.	8.6	1,051
71	Local Circuit Neurons in the Frontal Cortex and the Neostriatum. , 1995, , 73-88.		7
72	Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. Journal of Comparative Neurology, 1993, 332, 499-513.	1.6	102

#	Article	IF	CITATIONS
73	Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. NeuroReport, 1993, 5, 205-208.	1.2	150
74	Groupings of nonpyramidal and pyramidal cells with specific physiological and morphological characteristics in rat frontal cortex. Journal of Neurophysiology, 1993, 69, 416-431.	1.8	330
75	Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. Journal of Neurophysiology, 1993, 70, 387-396.	1.8	511
76	Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. Journal of Neuroscience, 1993, 13, 4908-4923.	3.6	700
77	Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. Journal of Neurophysiology, 1992, 67, 1669-1682.	1.8	171
78	Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro. Experimental Brain Research, 1992, 88, 33-40.	1.5	130
79	Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. Journal of Neuroscience, 1990, 10, 3421-3438.	3.6	522
80	Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. Journal of Neurophysiology, 1989, 62, 1052-1068.	1.8	350
81	Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA1 region. Experimental Brain Research, 1988, 72, 494-502.	1.5	114
82	Fast-spiking non-pyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats. Brain Research, 1987, 425, 351-355.	2.2	79
83	Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection. Brain Research, 1987, 411, 190-195.	2.2	96
84	Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Research, 1987, 416, 369-374.	2.2	476
85	Two groups of secondary vestibular neurons mediating horizontal canal signals, probably to the ipsilateral medial rectus muscle, under inhibitory influences from the cerebellar flocculus in rabbits. Neuroscience Research, 1985, 2, 434-446.	1.9	48
86	Excitatory effects on renal sympathetic nerve activity induced by stimulation at two distinctive sites in the fastigial nucleus of rabbits. Brain Research, 1984, 304, 372-376.	2.2	18
87	Evidence of a collateralized climbing fiber projection from the inferior olive to the flocculus and vestibular nuclei in rabbits. Neuroscience Letters, 1981, 22, 23-29.	2.1	44
88	Interaction between Neuron and Radial Glia Mediated by Semaphorin 6A-Plexin A2/A4 Signaling Regulates Migration Termination of Superficial Layer Neurons of the Cerebral Cortex. SSRN Electronic Journal, 0, , .	0.4	0