Paul D Jones

List of Publications by Citations

Source: https://exaly.com/author-pdf/5976597/paul-d-jones-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

169 8,785 56 papers citations h-index

176 9,435 ext. citations

6.1 avg, IF

5.47 L-index

g-index

#	Paper	IF	Citations
169	Binding of perfluorinated fatty acids to serum proteins. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2639-49	3.8	440
168	Accumulation of perfluorooctane sulfonate in marine mammals. <i>Environmental Science & Environmental Sc</i>	10.3	419
167	Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. <i>Environmental Science & Environmental Science & Environme</i>	10.3	245
166	Probabilistic risk assessment of agrochemicals in the environment. <i>Crop Protection</i> , 2000 , 19, 649-655	2.7	205
165	Perfluorinated compounds in water, sediment, soil and biota from estuarine and coastal areas of Korea. <i>Environmental Pollution</i> , 2010 , 158, 1237-44	9.3	201
164	Origin of hydroxylated brominated diphenyl ethers: natural compounds or man-made flame retardants?. <i>Environmental Science & Environmental Science & E</i>	10.3	196
163	Gene expression profiles in rat liver treated with perfluorooctanoic acid (PFOA). <i>Toxicological Sciences</i> , 2006 , 89, 93-107	4.4	177
162	Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. <i>Toxicological Sciences</i> , 2002 , 68, 429-36	4.4	158
161	Polybrominated diphenyl ethers and their hydroxylated/methoxylated analogs: environmental sources, metabolic relationships, and relative toxicities. <i>Marine Pollution Bulletin</i> , 2011 , 63, 179-88	6.7	156
160	Determination of fluoroquinolone antibiotics in wastewater effluents by liquid chromatography-mass spectrometry and fluorescence detection. <i>Chemosphere</i> , 2005 , 58, 759-66	8.4	153
159	Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis: hormone production. <i>Toxicology and Applied Pharmacology</i> , 2006 , 217, 114-24	4.6	144
158	Assessment of the effects of chemicals on the expression of ten steroidogenic genes in the H295R cell line using real-time PCR. <i>Toxicological Sciences</i> , 2004 , 81, 78-89	4.4	140
157	Hydroxylated polybrominated diphenyl ethers and bisphenol A in pregnant women and their matching fetuses: placental transfer and potential risks. <i>Environmental Science & Environmental Science & Env</i>	10.3	133
156	Fluorescent substrates for soluble epoxide hydrolase and application to inhibition studies. <i>Analytical Biochemistry</i> , 2005 , 343, 66-75	3.1	127
155	Nonylphenol isomers differ in estrogenic activity. <i>Environmental Science & Emp; Technology</i> , 2006 , 40, 5147-53	10.3	120
154	Perfluorinated compounds in streams of the Shihwa Industrial Zone and Lake Shihwa, South Korea. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 2374-80	3.8	120
153	1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. <i>Journal of Medicinal Chemistry</i> , 2010 , 53, 7067-75	8.3	119

(2008-2003)

152	Alterations in cell membrane properties caused by perfluorinated compounds. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2003 , 135, 77-88	3.2	119
151	Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. <i>Marine Pollution Bulletin</i> , 2002 , 45, 3-16	6.7	115
150	Real-time PCR array to study effects of chemicals on the Hypothalamic-Pituitary-Gonadal axis of the Japanese medaka. <i>Aquatic Toxicology</i> , 2008 , 88, 173-82	5.1	112
149	Aquatic toxicology of perfluorinated chemicals. <i>Reviews of Environmental Contamination and Toxicology</i> , 2010 , 202, 1-52	3.5	112
148	Avian toxicity reference values for perfluorooctane sulfonate. <i>Environmental Science & Environmental </i>	10.3	104
147	Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. <i>Ecotoxicology and Environmental Safety</i> , 2005 , 62, 160-73	7	102
146	Effect of pyrolysis temperature on potential toxicity of biochar if applied to the environment. <i>Environmental Pollution</i> , 2016 , 218, 1-7	9.3	101
145	Distributions and bioconcentration characteristics of perfluorinated compounds in environmental samples collected from the west coast of Korea. <i>Chemosphere</i> , 2013 , 90, 387-94	8.4	100
144	Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. <i>Aquatic Toxicology</i> , 2006 , 76, 230-45	5.1	100
143	Bisphenol A disrupts steroidogenesis in human H295R cells. <i>Toxicological Sciences</i> , 2011 , 121, 320-7	4.4	99
142	Dietary Exposure of Mink to Carp from Saginaw Bay. 3. Characterization of Dietary Exposure to Planar Halogenated Hydrocarbons, Dioxin Equivalents, and Biomagnification. <i>Environmental Science & Environmental Science</i>	10.3	99
141	Interconversion of hydroxylated and methoxylated polybrominated diphenyl ethers in Japanese medaka. <i>Environmental Science & Environmental Science & E</i>	10.3	94
140	Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. <i>Environmental Science & Environmental Science & Environment</i>	10.3	91
139	Simultaneous quantification of multiple classes of phenolic compounds in blood plasma by liquid chromatography-electrospray tandem mass spectrometry. <i>Journal of Chromatography A</i> , 2010 , 1217, 506-13	4.5	83
138	Removal of estrogenic activity from municipal waste landfill leachate assessed with a bioassay based on reporter gene expression. <i>Environmental Science & Environmental Scien</i>	10.3	83
137	Identification of genes responsive to PFOS using gene expression profiling. <i>Environmental Toxicology and Pharmacology</i> , 2005 , 19, 57-70	5.8	79
136	Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. <i>British Journal of Pharmacology</i> , 2009 , 156, 284-96	8.6	78
135	Responses of the medaka HPG axis PCR array and reproduction to prochloraz and ketoconazole. <i>Environmental Science & amp; Technology</i> , 2008 , 42, 6762-9	10.3	76

134	Synthesis and SAR of conformationally restricted inhibitors of soluble epoxide hydrolase. Bioorganic and Medicinal Chemistry Letters, 2006 , 16, 5212-6	2.9	76
133	The H295R system for evaluation of endocrine-disrupting effects. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 65, 293-305	7	76
132	Effect of ozonation on the estrogenicity and androgenicity of oil sands process-affected water. <i>Environmental Science & Environmental Science & Envir</i>	10.3	75
131	Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. <i>Aquatic Toxicology</i> , 2005 , 72, 383-96	5.1	73
130	Bioassay-Derived 2,3,7,8-Tetrachlorodibenzo-p-dioxin Equivalents in PCB-Containing Extracts from the Flesh and Eggs of Lake Michigan Chinook Salmon (Oncorhynchus tshawytscha) and Possible Implications for Reproduction. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1991 , 48, 1685-1690	2.4	72
129	Development of toxic equivalency factors for PCB congeners and the assessment of TCDD and PCB mixtures in rainbow trout. <i>Environmental Toxicology and Chemistry</i> , 1995 , 14, 861-871	3.8	71
128	Uptake of planar polychlorinated biphenyls and 2,3,7,8-substituted polychlorinated dibenzofurans and dibenzo-p-dioxins by birds nesting in the lower fox river and Green Bay, Wisconsin, USA. <i>Archives of Environmental Contamination and Toxicology</i> , 1993 , 24, 332-344	3.2	71
127	Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line. <i>Chemosphere</i> , 2010 , 80, 578-84	8.4	70
126	Review of the effects of endocrine-disrupting chemicals in birds. <i>Pure and Applied Chemistry</i> , 2003 , 75, 2287-2303	2.1	70
125	Bridging science and traditional knowledge to assess cumulative impacts of stressors on ecosystem health. <i>Environment International</i> , 2017 , 102, 125-137	12.9	67
124	Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea. <i>Chemosphere</i> , 2015 , 129, 157-63	8.4	66
123	Pharmacokinetic screening of soluble epoxide hydrolase inhibitors in dogs. <i>European Journal of Pharmaceutical Sciences</i> , 2010 , 40, 222-38	5.1	66
122	Tissue concentrations of polybrominated compounds in Chinese sturgeon (Acipenser sinensis): origin, hepatic sequestration, and maternal transfer. <i>Environmental Science & Environmental Science & Env</i>	10.3	64
121	Development of a high-throughput screen for soluble epoxide hydrolase inhibition. <i>Analytical Biochemistry</i> , 2006 , 355, 71-80	3.1	62
120	Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Rana clamitans). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2004 , 67, 941-57	3.2	62
119	Historical trends of inorganic and organic fluorine in sediments of Lake Michigan. <i>Chemosphere</i> , 2014 , 114, 203-9	8.4	61
118	Effects of atrazine on CYP19 gene expression and aromatase activity in testes and on plasma sex steroid concentrations of male African clawed frogs (Xenopus laevis). <i>Toxicological Sciences</i> , 2005 , 86, 273-80	4.4	60
117	Occurrences and fates of hydroxylated polybrominated diphenyl ethers in marine sediments in relation to trophodynamics. <i>Environmental Science & Environmental Science & Envir</i>	10.3	59

(2011-2001)

116	Organochlorine pesticides, polychlorinated biphenyls, and butyltin compounds in blubber and livers of stranded California sea lions, elephant seals, and harbor seals from coastal California, USA. Archives of Environmental Contamination and Toxicology, 2001, 41, 90-9	3.2	59	
115	Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (Xenopus laevis) from South Africa. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 1996-2007	3.8	58	
114	Perfluoroalkyl acids in marine organisms from Lake Shihwa, Korea. <i>Archives of Environmental Contamination and Toxicology</i> , 2009 , 57, 552-60	3.2	57	
113	Untargeted Identification of Organo-Bromine Compounds in Lake Sediments by Ultrahigh-Resolution Mass Spectrometry with the Data-Independent Precursor Isolation and Characteristic Fragment Method. <i>Analytical Chemistry</i> , 2015 , 87, 10237-46	7.8	54	
112	Deformities, PCBs, and TCDD-Equivalents in Double-Crested Cormorants (Phalacrocorax auritus) and Caspian Terns (Hydroprogne caspia) of the Upper Great Lakes 1986 1991: Testing a Cause-Effect Hypothesis. <i>Journal of Great Lakes Research</i> , 1996 , 22, 172-197	3	53	
111	Modulation of steroidogenic gene expression and hormone production of H295R cells by pharmaceuticals and other environmentally active compounds. <i>Toxicology and Applied Pharmacology</i> , 2007 , 225, 142-53	4.6	52	
110	Effects of chronic dietary exposure to environmentally relevant concentrations to 2,3,7,8-tetrachlorodibenzo-p-dioxin on survival, growth, reproduction and biochemical responses of female rainbow trout (Oncorhynchus mykiss). <i>Aquatic Toxicology</i> , 2002 , 59, 35-53	5.1	52	
109	Cytochrome P4501A induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans in primary hepatocyte cultures of three avian species. <i>Toxicological Sciences</i> , 2010 , 113, 380-91	4.4	51	
108	1-(1-acetyl-piperidin-4-yl)-3-adamantan-1-yl-urea (AR9281) as a potent, selective, and orally available soluble epoxide hydrolase inhibitor with efficacy in rodent models of hypertension and dysglycemia. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2011 , 21, 983-8	2.9	51	
107	Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin. <i>Ecotoxicology and Environmental Safety</i> , 1992 , 23, 46-63	7	49	
106	Comparative efficacy of 3 soluble epoxide hydrolase inhibitors in rat neuropathic and inflammatory pain models. <i>European Journal of Pharmacology</i> , 2013 , 700, 93-101	5.3	47	
105	Quantitative structure-activity relationships for the prediction of relative in vitro potencies (REPs) for chloronaphthalenes. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2007 , 42, 573-90	2.3	47	
104	Global biomonitoring of perfluorinated organics. Scientific World Journal, The, 2001, 1, 627-9	2.2	45	
103	2,3,7,8-Tetrachlorodibenzo-p-dioxin equivalents in tissues of birds at Green Bay, Wisconsin, USA. <i>Archives of Environmental Contamination and Toxicology</i> , 1993 , 24, 345-354	3.2	45	
102	Time-dependent transcriptional profiles of genes of the hypothalamic-pituitary-gonadal axis in medaka (Oryzias latipes) exposed to fadrozole and 17beta-trenbolone. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 2504-11	3.8	43	
101	Caspian Tern Reproduction in the Saginaw Bay Ecosystem Following a 100-Year Flood Event. Journal of Great Lakes Research, 1993 , 19, 96-108	3	43	
100	AhR-mediated potency of sediments and soils in estuarine and coastal areas of the Yellow Sea region: a comparison between Korea and China. <i>Environmental Pollution</i> , 2012 , 171, 216-25	9.3	41	
99	Sensitivity of Japanese quail (Coturnix japonica), Common pheasant (Phasianus colchicus), and White Leghorn chicken (Gallus gallus domesticus) embryos to in ovo exposure to TCDD, PeCDF, and	4.4	41	

98	Environmental fate and bioavailability of Agent Orange and its associated dioxin during the Vietnam War. <i>Environmental Science and Pollution Research</i> , 2004 , 11, 359-70	5.1	41
97	Cytotoxicity and aryl hydrocarbon receptor-mediated activity of n-heterocyclic polycyclic aromatic hydrocarbons: structure-activity relationships. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1291-	7 ^{3.8}	40
96	Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1053-62	3.8	39
95	Differential accumulation of polychlorinated biphenyl congeners in the terrestrial food web of the Kalamazoo River Superfund site, Michigan. <i>Environmental Science & Environmental Science & Environm</i>	10.3	38
94	Alteration of steroidogenesis in H295R cells by organic sediment contaminants and relationships to other endocrine disrupting effects. <i>Environment International</i> , 2006 , 32, 749-57	12.9	38
93	Transcriptional responses of male fathead minnows exposed to oil sands process-affected water. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2013 , 157, 227-35	3.2	37
92	Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms. <i>Environmental Science & Environmental & Enviro</i>	10.3	36
91	Combined Transcriptomic and Proteomic Approach to Identify Toxicity Pathways in Early Life Stages of Japanese Medaka (Oryzias latipes) Exposed to 1,2,5,6-Tetrabromocyclooctane (TBCO). <i>Environmental Science & Description (TBCO)</i> 2016, 50, 7781-90	10.3	35
90	Untargeted Screening and Distribution of Organo-Bromine Compounds in Sediments of Lake Michigan. <i>Environmental Science & Environmental Science & Envi</i>	10.3	34
89	Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: targeting the cAMP signalling cascade. <i>Toxicology and Applied Pharmacology</i> , 2010 , 247, 222-8	4.6	34
88	Perfluorooctane sulfonate increases the genotoxicity of cyclophosphamide in the micronucleus assay with V79 cells. Further proof of alterations in cell membrane properties caused by PFOS. <i>Environmental Science and Pollution Research</i> , 2007 , 14, 85-7	5.1	34
87	Modulation of steroidogenesis by coastal waters and sewage effluents of Hong Kong, China, using the H295R assay. <i>Environmental Science and Pollution Research</i> , 2008 , 15, 332-43	5.1	34
86	Mutagenic Azo Dyes, Rather Than Flame Retardants, Are the Predominant Brominated Compounds in House Dust. <i>Environmental Science & Environmental Scien</i>	10.3	33
85	Mineralization of bisphenol A by catalytic ozonation over alumina. <i>Separation and Purification Technology</i> , 2013 , 107, 310-317	8.3	32
84	Sources and distribution of polychlorinated-dibenzo-p-dioxins and -dibenzofurans in soil and sediment from the Yellow Sea region of China and Korea. <i>Environmental Pollution</i> , 2011 , 159, 907-17	9.3	32
83	Differential accumulation of polychlorinated biphenyl congeners in the aquatic food web at the Kalamazoo River Superfund site, Michigan. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	32
82	Reproductive success, developmental anomalies, and environmental contaminants in double-crested cormorants (Phalacrocorax auritus). <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 553-559	3.8	31
81	Potential health risks posed by polycyclic aromatic hydrocarbons in muscle tissues of fishes from the Athabasca and Slave Rivers, Canada. <i>Environmental Geochemistry and Health</i> , 2017 , 39, 139-160	4.7	30

(1993-2010)

80	Bioaccumulation of polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like polychlorinated biphenyls in fishes from the Tittabawassee and Saginaw Rivers, Michigan, USA. <i>Science of the Total Environment</i> , 2010 , 408, 2394-401	10.2	30	
79	Identification of two epoxide hydrolases in Caenorhabditis elegans that metabolize mammalian lipid signaling molecules. <i>Archives of Biochemistry and Biophysics</i> , 2008 , 472, 139-49	4.1	29	
78	Tree swallow (Tachycineta bicolor) exposure to polychlorinated biphenyls at the Kalamazoo River superfund site, Michigan, USA. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 428-37	3.8	29	
77	. Environmental Toxicology and Chemistry, 1996 , 15, 553	3.8	29	
76	Pathologic alterations in adult rainbow trout, Oncorhynchus mykiss, exposed to dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Aquatic Toxicology</i> , 2000 , 50, 287-299	5.1	28	
75	Persistent synthetic chlorinated hydrocarbons in albatross tissue samples from midway atoll. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 1793-1800	3.8	28	
74	PBDEs and methoxylated analogues in sediment cores from two Michigan, USA, inland lakes. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 1236-42	3.8	27	
73	Toxaphene and other persistent organochlorine pesticides in three species of albatrosses from the north and south Pacific Ocean. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 413-423	3.8	26	
72	Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin by rainbow trout (Onchorhynchus mykiss) at environmentally relevant dietary concentrations. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 344	1 - 380	26	
71	Effects induced by feeding organochlorine-contaminated carp from Saginaw Bay, Lake Huron, to laying White Leghorn hens. I. Effects on health of adult hens, egg production, and fertility. <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 1996 , 49, 389-407	3.2	26	
70	Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. <i>Environmental Pollution</i> , 2018 , 237, 396-405	9.3	25	
69	Plasma steroid hormone concentrations, aromatase activities and GSI in ranid frogs collected from agricultural and non-agricultural sites in Michigan (USA). <i>Aquatic Toxicology</i> , 2006 , 77, 153-66	5.1	25	
68	Perfluorinated Compounds in the Great Lakes391-438		25	
67	Transcriptional effects of perfluorinated compounds in rat hepatoma cells. <i>Chemosphere</i> , 2012 , 86, 270	-B. ₄	24	
66	Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes). <i>Toxicology and Applied Pharmacology</i> , 2008 , 232, 226-35	4.6	23	
65	A Comparison of Water Quality Criteria for the Great Lakes Based on Human and Wildlife Health. Journal of Great Lakes Research, 1993 , 19, 789-807	3	22	
64	Examination of reproductive endpoints in goldfish (Carassius auratus) exposed in situ to municipal sewage treatment plant effluent discharges in Michigan, USA. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2416-31	3.8	21	
63	Biomagnification of bioassay derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents. <i>Chemosphere</i> , 1993 , 26, 1203-1212	8.4	21	

62	Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community. <i>Science of the Total Environment</i> , 2017 , 586, 338-346	10.2	20
61	Products of biotransformation of polycyclic aromatic hydrocarbons in fishes of the Athabasca/Slave river system, Canada. <i>Environmental Geochemistry and Health</i> , 2016 , 38, 577-91	4.7	20
60	Development and optimization of a Q-RT PCR method to quantify CYP19 mRNA expression in testis of male adult Xenopus laevis: comparisons with aromatase enzyme activity. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2006 , 144, 18-28	2.3	20
59	Dietary exposure of mink to carp from Saginaw Bay, Michigan: 2. Hematology and liver pathology. <i>Archives of Environmental Contamination and Toxicology</i> , 1995 , 29, 411-7	3.2	20
58	Effects of in ovo exposure of white leghorn chicken, common pheasant, and Japanese quail to 2,3,7,8-tetrachlorodibenzo-p-dioxin and two chlorinated dibenzofurans on CYP1A induction. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1490-502	3.8	19
57	Untargeted Screening and Distribution of Organo-lodine Compounds in Sediments from Lake Michigan and the Arctic Ocean. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	19
56	Reconstructing long-term trends in municipal sewage discharge into a small lake in northern Manitoba, Canada. <i>Chemosphere</i> , 2014 , 103, 299-305	8.4	18
55	Identification of Chemicals that Cause Oxidative Stress in Oil Sands Process-Affected Water. <i>Environmental Science & Environmental Science & Environm</i>	10.3	18
54	Peroxisome Proliferator-Activated Receptor lbs a Sensitive Target for Oil Sands Process-Affected Water: Effects on Adipogenesis and Identification of Ligands. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 7816-24	10.3	17
53	Instrumental and bioanalytical measures of dioxin-like compounds and activities in sediments of the Pohang Area, Korea. <i>Science of the Total Environment</i> , 2014 , 470-471, 1517-25	10.2	17
52	Detection, identification, and quantification of hydroxylated bis(2-ethylhexyl)-tetrabromophthalate isomers in house dust. <i>Environmental Science & Environmental Science & En</i>	10.3	17
51	Occurrence of wax esters in the tissues of the orange roughly (Hoplostethus atlanticus). <i>Lipids</i> , 1983 , 18, 585-8	1.6	17
50	Advanced fluorescence in situ hybridization to localize and quantify gene expression in Japanese medaka (Oryzias latipes) exposed to endocrine-disrupting compounds. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1951-62	3.8	16
49	Risk assessment of great horned owls (Bubo virginianus) exposed to polychlorinated biphenyls and DDT along the Kalamazoo River, Michigan, USA. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 1386	<u>-38</u>	16
48	Comparison of risk assessment methodologies for exposure of mink to PCBs on the Kalamazoo River, Michigan. <i>Environmental Science & Environmental Scie</i>	10.3	16
47	Accumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents by double-crested cormorant (Phalacrocorax auritus, Pelicaniformes) chicks in the North American Great Lakes. <i>Ecotoxicology and Environmental Safety</i> , 1994 , 27, 192-209	7	16
46	Developmental Exposure to Aroclor 1254 Alters Migratory Behavior in Juvenile European Starlings (Sturnus vulgaris). <i>Environmental Science & Environmental Science & Environme</i>	10.3	15
45	Generalized concentration addition accurately predicts estrogenic potentials of mixtures and environmental samples containing partial agonists. <i>Toxicology in Vitro</i> , 2018 , 46, 294-303	3.6	14

Metals and PFAS in stormwater and surface runoff in a semi-arid Canadian city subject to large 44 variations in temperature among seasons. Environmental Science and Pollution Research, 2020, 27, 18232 5 1824 12 Classification of chemicals based on concentration-dependent toxicological data using ToxClust. 10.3 11 43 Environmental Science & Environmental Accumulation of polychlorinated biphenyls from floodplain soils by passerine birds. Environmental 3.8 42 11 Toxicology and Chemistry, **2006**, 25, 1503-11 Exploring the effects of cooperative interactions on affinity using a pinwheel sensor system. 41 2.4 11 Tetrahedron, 2004, 60, 11057-11065 The use of field-based mesocosm systems to assess the effects of uranium milling effluent on 40 2.9 10 fathead minnow (Pimephales promelas) reproduction. Ecotoxicology, 2011, 20, 1209-24 Developmental and posthatch effects of in ovo exposure to 2,3,7,8-TCDD, 2,3,4,7,8-PECDF, and 2,3,7,8-TCDF in Japanese quail (Coturnix japonica), common pheasant (Phasianus colchicus), and 3.8 10 39 white leghorn chicken (Gallus gallus domesticus) embryos. Environmental Toxicology and Chemistry, In situ hybridization to detect spatial gene expression in medaka. Ecotoxicology and Environmental 38 7 10 Safety, 2009, 72, 1257-64 Bioanalytical and instrumental screening of the uptake of sediment-borne, dioxin-like compounds 5.1 10 37 in roach (Rutilus rutilus). Environmental Science and Pollution Research, 2016, 23, 12060-74 Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic 36 9.3 9 potencies with several nuclear receptors. Environmental Pollution, 2017, 227, 578-586 Productivity of tree swallows (Tachycineta bicolor) exposed to PCBs at the Kalamazoo River 35 9 superfund site. Journal of Toxicology and Environmental Health - Part A: Current Issues, **2006**, 69, 39<u>5</u>-415^{3.2} Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic 34 5.8 9 acid. Environmental Toxicology and Pharmacology, 2005, 19, 153-60 Terminology of Gonadal Anomalies in Fish and Amphibians Resulting from Chemical Exposures. 33 9 3.5 Reviews of Environmental Contamination and Toxicology, 2006, 103-131 Exposure and Multiple Lines of Evidence Assessment of Risk for PCBs Found in the Diets of Passerine Birds at the Kalamazoo River Superfund Site, Michigan. Human and Ecological Risk 32 4.9 9 Assessment (HERA), 2006, 12, 924-946 Abundances and concentrations of brominated azo dyes detected in indoor dust. Environmental 31 9.3 Pollution, 2019, 252, 784-793 Vanadium and thallium exhibit biodilution in a northern river food web. Chemosphere, 2019, 233, 381-386.4 30 7 Comparison of the Effects of Extraction Techniques on Mass Spectrometry Profiles of Dissolved 29 4.1 Organic Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compounds in Oil Sand Process-Affected Water. Energy & Dispersion of the Compound of th Standard purity and response factors of perfluorinated compounds. Toxicological and 28 1.4 7 Environmental Chemistry, **2010**, 92, 1219-1232 Sediment TCDD-EQs and EROD and MROD activities in Ranid frogs from agricultural and nonagricultural sites in Michigan (USA). Archives of Environmental Contamination and Toxicology, 27 7 **2006**, 51, 467-77

26	2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in tissue samples from three species in the Denver, Colorado, USA, metropolitan area. <i>Environmental Toxicology and Chemistry</i> , 2001 , 20, 2433-2442	3.8	7
25	Effects of the husky oil spill on gut microbiota of native fishes in the North Saskatchewan River, Canada. <i>Aquatic Toxicology</i> , 2020 , 229, 105658	5.1	7
24	Terminology of Gonadal Anomalies in Fish and Amphibians Resulting from Chemical Exposures. <i>Reviews of Environmental Contamination and Toxicology</i> , 2006 , 103-131	3.5	7
23	Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish () Is Prone to Aromatic Substituent Changes. <i>Environmental Science & Environmental Science & Envi</i>	10.3	6
22	Sequencing and characterization of mixed function monooxygenase genes CYP1A1 and CYP1A2 of Mink (Mustela vison) to facilitate study of dioxin-like compounds. <i>Toxicology and Applied Pharmacology</i> , 2009 , 234, 306-13	4.6	6
21	The contribution of dioxin-like compounds from platinum mining and processing samples. <i>Minerals Engineering</i> , 2007 , 20, 191-193	4.9	5
20	Use of in vitro microbial assays of sediment extracts to detect and quantify contaminants with similar modes of action. <i>Chemosphere</i> , 1994 , 28, 169-181	8.4	5
19	Evaluating transdisciplinary research practices: insights from social network analysis. <i>Sustainability Science</i> , 2021 , 16, 631-645	6.4	5
18	Ecological patterns of fish distribution in the Slave River Delta region, Northwest Territories, Canada, as relayed by traditional knowledge and Western science. <i>International Journal of Water Resources Development</i> , 2018 , 34, 305-324	3	4
17	Distribution of PCDDs and PCDFs in soils collected from the Denver Front Rangeprincipal components analysis of diffuse dioxin sources. <i>Environmental Science and Pollution Research</i> , 2005 , 12, 189-98	5.1	4
16	Persistent synthetic chlorinated hydrocarbons in albatross tissue samples from midway atoll 1996 , 15, 1793		4
15	Toxaphene and other persistent organochlorine pesticides in three species of albatrosses from the north and south Pacific Ocean. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 413-23	3.8	4
14	Towards indigenous community-led monitoring of fish in the oil sands region of Canada: Lessons at the intersection of cultural consensus and fish science. <i>The Extractive Industries and Society</i> , 2020 , 7, 13	19:432	294
13	Concentrations of Metals in Fishes from the Athabasca and Slave Rivers of Northern Canada. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 2180-2195	3.8	4
12	Risk Assessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Equivalents in Tissue Samples from Three Species in the Denver Metropolitan Area. <i>Human and Ecological Risk Assessment (HERA)</i> , 2000 , 6, 1087-1	10499	3
11	Responses of juvenile fathead minnow (Pimephales promelas) gut microbiome to a chronic dietary exposure of benzo[a]pyrene. <i>Environmental Pollution</i> , 2021 , 278, 116821	9.3	3
10	Response to Comment on "Mutagenic Azo Dyes, Rather than Flame Retardants, are the Predominant Brominated Compounds in House Dust". <i>Environmental Science & Environmental Scie</i>	10.3	2
9	Mechanisms of pH-Dependent Uptake of Ionizable Organic Chemicals by Fish from Oil Sands Process-Affected Water (OSPW). <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 9547-9555	10.3	2

LIST OF PUBLICATIONS

8	Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2916-2924	3.8	2
7	Risk assessment methodologies for exposure of great horned owls (Bubo virginianus) to PCBs on the Kalamazoo River, Michigan. <i>Integrated Environmental Assessment and Management</i> , 2008 , 4, 24-40	2.5	2
6	Effects of the brominated flame retardant, TBCO, on development of zebrafish (Danio rerio) embryos. <i>Chemosphere</i> , 2021 , 266, 129195	8.4	2
5	Altered egg size and selenium concentrations during and following exposure of fathead minnows (Pimephales promelas) to an industrial effluent. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 504-6	2.5	1
4	The brominated flame retardant, TBCO, impairs oocyte maturation in zebrafish (Danio rerio). <i>Aquatic Toxicology</i> , 2021 , 238, 105929	5.1	1
3	Toxicokinetic Models for Bioconcentration of Organic Contaminants in Two Life Stages of White Sturgeon (). <i>Environmental Science & Environmental Scie</i>	10.3	О
2	Health status of fathead minnow (Pimephales promelas) populations in a municipal wastewater effluent-dominated stream in the Canadian prairies, Wascana Creek, Saskatchewan. <i>Aquatic Toxicology</i> , 2021 , 238, 105933	5.1	О
1	Absorption and elimination of per and poly-fluoroalkyl substances substitutes in salmonid species after pre-fertilization exposure <i>Science of the Total Environment</i> , 2021 , 814, 152547	10.2	