Dariush Semnani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976469/publications.pdf

Version: 2024-02-01

331670 377865 1,680 102 21 34 citations h-index g-index papers 105 105 105 2068 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Manufacturing and characterizing of the poly (<i>ε</i> -caprolactone)/poly (N-vinyl-2-pyrrolidone) core-shell nanofibers loaded by multi-walled carbon nanotubes coated by polypyrrole via vapor phase and chemical method and its application as an electro-responsive anticancer drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1009-1020.	3.4	3
2	Using analytical hierarchy process to optimize mechanical properties of multi-twisted buckled silk yarn as a collagenous tissue scaffold. Journal of the Textile Institute, 2022, 113, 460-466.	1.9	3
3	Fabrication and characterization of <scp>chitosanâ€gelatin</scp> / <scp>singleâ€walled</scp> carbon nanotubes electrospun composite scaffolds for cartilage tissue engineering applications. Polymers for Advanced Technologies, 2022, 33, 81-95.	3.2	19
4	A generalized method of measuring the Poisson's ratio of warp knitted fabrics under uniaxial loading based on image processing technique. Journal of the Textile Institute, 2022, 113, 70-79.	1.9	3
5	5FU-loaded PCL/Chitosan/Fe ₃ O ₄ Core-Shell Nanofibers Structure: An Approach to Multi-Mode Anticancer System. Advanced Pharmaceutical Bulletin, 2022, 12, 568-582.	1.4	8
6	Electroâ€conductive nanofibrous structure based on <scp>PGS</scp> / <scp>PCL</scp> coated with <scp>PPy</scp> by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 2022, 139, .	2.6	4
7	A comparative analysis on the morphology and electrochemical performances of solution-casted and electrospun PEO-based electrolytes: The effect of fiber diameter and surface density. Electrochimica Acta, 2021, 368, 137339.	5.2	12
8	Application of electrospun fibers for the fabrication of high performance all-solid-state fibrous batteries., 2021,, 229-244.		2
9	Electrochemical nanofibers., 2021,, 335-369.		O
10	Investigation and comparison of new galactosylation methods on PCL/chitosan scaffolds for enhanced liver tissue engineering. International Journal of Biological Macromolecules, 2021, 174, 278-288.	7.5	27
11	Effects of Processing Variables on the Mechanical Behavior of Thermoplastic Polypropylene/Glass Composite Reinforced with Weft-knitted Fabric with Various Layups. Fibers and Polymers, 2021, 22, 2006-2017.	2.1	3
12	Study on the electrochromic properties of polypyrrole layers doped with different dye molecules. Journal of Electroanalytical Chemistry, 2021, 886, 115113.	3.8	16
13	Fabrication and characterization of hollow electrospun PLA structure through a modified electrospinning method applicable as vascular graft. Bulletin of Materials Science, 2021, 44, 1.	1.7	5
14	Application of Electrospun Nanofibers for Fabrication of Versatile and Highly Efficient Electrochemical Devices: A Review. Polymers, 2021, 13, 1741.	4.5	29
15	Comparison of the antifungal activity of fluconazole- and ketoconazole-loaded PCL/PVP nanofibrous mat. Bulletin of Materials Science, 2021, 44, 1.	1.7	13
16	Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers. Journal of Materials Science: Materials in Medicine, 2021, 32, 82.	3.6	10
17	Biocompatible grapheneâ€embedded <scp>PCL</scp> / <scp>PGS</scp> â€based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 2021, 138, 51177.	2.6	19
18	Fabrication and Characterization of the Electrospun Polyvinyl Alcohol Nanofibers Incorporated with the Extracted Fruit Peel Pectin and Zinc Oxide Nanoparticles. Materials Performance and Characterization, 2021, 10, 819-829.	0.3	0

#	Article	IF	CITATIONS
19	High flux nanofibrous membranes for colored effluent treatment. Water and Environment Journal, 2020, 34, 274-283.	2.2	3
20	Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: a versatile solvent-free electrolyte for lithium-ion battery application. Ionics, 2020, 26, 3249-3260.	2.4	25
21	PVDF/TiO ₂ /graphene oxide composite nanofiber membranes serving as separators in lithiumâ€ion batteries. Journal of Applied Polymer Science, 2020, 137, 48775.	2.6	13
22	Gaining insight into electrolyte solution effects on the electrochemomechanical behavior of electroactive PU/PPy nanofibers: Introducing a high-performance artificial muscle. Sensors and Actuators B: Chemical, 2020, 305, 127519.	7.8	12
23	Electrospun <scp>PGS</scp> / <scp>PCL</scp> nanofibers: From straight to sponge and <scp>springâ€ike</scp> morphology. Polymers for Advanced Technologies, 2020, 31, 3134-3149.	3.2	16
24	Simulation and characterization of the mechanical properties of knitted esophageal stents using finite element and mathematical models. Journal of Industrial Textiles, 2020, , 152808372094541.	2.4	1
25	Overcoming the potential drop in conducting polymer artificial muscles through metallization of electrospun nanofibers by electroplating process. Smart Materials and Structures, 2020, 29, 085036.	3.5	8
26	Poly (Îμ-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: an anticancer drug delivery system. Journal of Materials Science, 2020, 55, 10185-10201.	3.7	24
27	Novel electrospun polymer electrolytes incorporated with Kegginâ€ŧype hetero polyoxometalate fillers as solventâ€free electrolytes for lithium ion batteries. Polymer International, 2020, 69, 675-687.	3.1	12
28	Designing a novel and versatile multi-layered nanofibrous structure loaded with MTX and 5-FU for the targeted delivery of anticancer drugs. Polymer Degradation and Stability, 2020, 179, 109275.	5.8	18
29	Electroactive actuator based on polyurethane nanofibers coated with polypyrrole through electrochemical polymerization: a competent method for developing artificial muscles. Smart Materials and Structures, 2020, 29, 045008.	3.5	12
30	The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries. Solid State Ionics, 2020, 347, 115252.	2.7	25
31	Development of an Electrospun Scaffold for Retinal Tissue Engineering. Polymer Science - Series B, 2020, 62, 290-298.	0.8	6
32	Electrospun coreâ€shell nanofibers based on polyethylene oxide reinforced by multiwalled carbon nanotube and silicon dioxide nanofillers: A novel and effective solventâ€free electrolyte for lithium ion batteries. International Journal of Energy Research, 2020, 44, 7000-7014.	4.5	11
33	Polycaprolactone–Gelatin Membranes in Controlled Drug Delivery of 5-Fluorouracil. Polymer Science - Series A, 2020, 62, 636-647.	1.0	11
34	Novel multi-layer silica aerogel/PVA composite for controlled drug delivery. Materials Research Express, 2019, 6, 095408.	1.6	10
35	Nanofibrous poly(ethylene oxide)â€based structures incorporated with multiâ€walled carbon nanotube and graphene oxide as allâ€solidâ€state electrolytes for lithium ion batteries. Polymer International, 2019, 68, 1787-1794.	3.1	31
36	An investigation on polycaprolactone/chitosan/Fe ₃ O ₄ nanofibrous composite used for hyperthermia. Polymers for Advanced Technologies, 2019, 30, 2729-2741.	3.2	11

#	Article	IF	CITATIONS
37	A composite polyaniline/graphene–coated polyamide6 nanofiber mat for electrochemical applications. Polymers for Advanced Technologies, 2019, 30, 2819-2826.	3.2	5
38	Core-shell nanofibers of poly (<i>ε</i> –caprolactone) and Polyvinylpyrrolidone for drug delivery system. Materials Research Express, 2019, 6, 115015.	1.6	16
39	Electrospun Polyethylene Oxide-Based Membranes Incorporated with Silicon Dioxide, Aluminum Oxide and Clay Nanoparticles as Flexible Solvent-Free Electrolytes for Lithium-Ion Batteries. Jom, 2019, 71, 4537-4546.	1.9	17
40	Electrochromic Self-Electrostabilized Polypyrrole Films Doped with Surfactant and Azo Dye. Polymers, 2019, 11, 1757.	4.5	14
41	Highly conductive Faradaic artificial muscle based on nanostructured polypyrrole-bis(trifluoromethylsulfonyl)imide synthesized onto electrospun polyurethane nanofibers. Sensors and Actuators B: Chemical, 2019, 297, 126736.	7.8	19
42	Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries. Materials Research Express, 2019, 6, 0850d6.	1.6	28
43	Synthesis and characterization of a novel polyurethane/polypyrroleâ€pâ€ŧoluenesulfonate (PU/PPyâ€pTS) electroactive nanofibrous bending actuator. Polymers for Advanced Technologies, 2019, 30, 2261-2274.	3.2	26
44	Systematic investigation of parameters of an electrospinning process of poly(acrylic acid) nanofibres using response surface methodology. Bulletin of Materials Science, 2019, 42, 1.	1.7	9
45	Effects of nano-bioactive glass on structural, mechanical and bioactivity properties of Poly (3-hydroxybutyrate) electrospun scaffold for bone tissue engineering applications. Materials Technology, 2019, 34, 540-548.	3.0	41
46	Evaluation of physical, mechanical and biological properties of poly 3-hydroxybutyrate-chitosan-multiwalled carbon nanotube/silk nano-micro composite scaffold for cartilage tissue engineering applications. International Journal of Biological Macromolecules, 2019, 132, 822-835.	7.5	66
47	Evaluating the electrochemical properties of PEOâ€based nanofibrous electrolytes incorporated with TiO ₂ nanofiller applicable in lithiumâ€ion batteries. Polymers for Advanced Technologies, 2019, 30, 1234-1242.	3.2	31
48	Fabrication of Nanofibrous PVA/Alginateâ€Sulfate Substrates for Growth Factor Delivery. Journal of Biomedical Materials Research - Part A, 2019, 107, 403-413.	4.0	50
49	Morphology and electrochemical and mechanical properties of polyethyleneâ€oxideâ€based nanofibrous electrolytes applicable in lithium ion batteries. Polymer International, 2019, 68, 746-754.	3.1	21
50	A novel bilayer drug-loaded wound dressing of PVDF and PHB/Chitosan nanofibers applicable for post-surgical ulcers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 772-777.	3.4	54
51	Comparing the drug loading and release of silica aerogel and PVA nano fibers. Journal of Non-Crystalline Solids, 2019, 503-504, 186-193.	3.1	17
52	Manufacturing and Optimization the Nanofibres Tissue of Poly(N-vinyl-2-pyrrolidone) - Poly(e-caprolactone) Shell/Poly(N-vinyl-2-pyrrolidone)-Amphotericin B Core for Controlled Drug Release System. Fibers and Polymers, 2018, 19, 620-626.	2.1	7
53	Nanofibrous Tubular Membrane for Blood Hemodialysis. Applied Biochemistry and Biotechnology, 2018, 186, 443-458.	2.9	15
54	Modeling the compliance of polyurethane nanofiber tubes for artificial common bile duct. Materials Research Express, 2018, 5, 025004.	1.6	4

#	Article	IF	CITATIONS
55	Rheological modeling of tubular weft knitted textiles. Journal of the Textile Institute, 2018, 109, 990-999.	1.9	1
56	Evaluation of polyacrylonitrile electrospun nanoâ€fibrous mats as leukocyte removal filter media. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1759-1769.	3.4	6
57	PCL nanofibers loaded with beta-carotene: a novel treatment for eczema. Polymer Bulletin, 2018, 75, 2015-2026.	3.3	18
58	An investigation on quilled nozzle-less electrospinning in comparison with conventional methods for producing PAN nanofibers. Fashion and Textiles, 2018, 5, .	2.4	2
59	Electrospun polyvinylidene pyrolidone/gelatin membrane impregnated with silver sulfadiazine as wound dressing for burn treatment. Bulletin of Materials Science, 2018, 41, 1.	1.7	13
60	Assessing the physical and mechanical properties of poly 3â€hydroxybutyrateâ€chitosanâ€multiâ€walled carbon nanotube/silk nano–micro composite scaffold for longâ€term healing tissue engineering applications. Micro and Nano Letters, 2018, 13, 829-834.	1.3	7
61	Polycaprolactone/chitosan blend nanofibers loaded by 5â€fluorouracil: An approach to anticancer drug delivery system. Polymers for Advanced Technologies, 2018, 29, 2972-2981.	3.2	59
62	Estimation of Mechanical Properties of PAN Nanofibers Based on Polymeric Structural Characteristics by Artificial Intelligence Modeling. Nanoscience and Nanotechnology - Asia, 2018, 8, .	0.7	0
63	Antifungal Activity of Eugenol Loaded Electrospun PAN Nanofiber Mats Against Candida Albicans. Current Drug Delivery, 2018, 15, 860-866.	1.6	22
64	Characterization of Silk/Poly 3-Hydroxybutyrate-chitosan-multi-walled Carbon Nanotube Micro-nano Scaffold: A New Hybrid Scaffold for Tissue Engineering Applications. Journal of Medical Signals and Sensors, 2018, 8, 46-52.	1.0	2
65	Meso modeling of silk wire rope scaffolds in tissue engineering. Journal of Industrial Textiles, 2017, 47, 377-389.	2.4	3
66	Evaluation of structural, mechanical, and cellular behavior of electrospun poly-3-hydroxybutyrate scaffolds loaded with glucosamine sulfate to develop cartilage tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 589-602.	3.4	16
67	The effect of electrospinning parameters on the compliance behavior of electrospun polyurethane tube for artificial common bile duct. Polymer Science - Series A, 2017, 59, 67-75.	1.0	3
68	Electrochemical properties of bi-component bundle of coaxial polyacrylonitrile/ polyaniline nanofibers containing TiO ₂ nanoparticles. Journal of Composite Materials, 2017, 51, 3355-3363.	2.4	4
69	Imparting strength into nanofiberous yarn by adhesive bonding. International Journal of Adhesion and Adhesives, 2017, 75, 96-100.	2.9	5
70	Investigating the performance of drug delivery system of fluconazole made of nano–micro fibers coated on cotton/polyester fabric. Journal of Materials Science: Materials in Medicine, 2017, 28, 175.	3.6	18
71	Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 149-157.	3.4	96
72	Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications. Fibers and Polymers, 2017, 18, 2342-2348.	2.1	6

#	Article	IF	CITATIONS
73	Electrospinning of aligned medical grade polyurethane nanofibres and evaluation of cell–scaffold interaction using SHED stem cells. Micro and Nano Letters, 2017, 12, 412-417.	1.3	2
74	Optimizing the mechanical properties of a bi-layered knitted/nanofibrous esophageal prosthesis using artificial intelligence. E-Polymers, 2016, 16, 359-371.	3.0	6
75	Optimizing the impact resistance of high tenacity Nylon 66 weft knitted fabrics via genetic algorithm. Fashion and Textiles, 2016, 3, .	2.4	1
76	Investigation of electroactive behavior of PVA/TiO ₂ nanofibers webs coated with polyaniline. Journal of Composite Materials, 2016, 50, 1321-1330.	2.4	8
77	Nano/Micro Hybrid Scaffold of PCL or P3HB Nanofibers Combined with Silk Fibroin for Tendon and Ligament Tissue Engineering. Journal of Applied Biomaterials and Functional Materials, 2015, 13, 156-168.	1.6	59
78	Improving the Mechanical Properties of Wire-Rope Silk Scaffold by Artificial Neural Network in Tendon and Ligament Tissue Engineering. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	1.0	3
79	Antibacterial performance of nano polypropylene filter media containing nano-TiO2 and clay particles. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	7
80	Jacquard pattern optimizing in weft knitted fabrics via interactive genetic algorithm. Fashion and Textiles, $2014,1,.$	2.4	6
81	Application of intelligent neural network method for prediction of mechanical behavior of wire-rope scaffold in tissue engineering. Journal of the Textile Institute, 2014, 105, 264-274.	1.9	11
82	Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomaterialia, 2014, 10, 709-721.	8.3	105
83	Phenotypic Modulation of Smooth Muscle Cells by Chemical and Mechanical Cues of Electrospun Tecophilic/Gelatin Nanofibers. ACS Applied Materials & Interfaces, 2014, 6, 4089-4101.	8.0	43
84	Development of Electro-Spun Poly (Vinyl Alcohol)/Titanium Dioxide Membrane-Based Polymer Electrolytes for Lithium-Ion Batteries. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 161-171.	3.4	18
85	Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers, 2014, 101, 1165-1180.	2.4	78
86	A novel model of optimum nanofibre distribution in nanofibre scaffold structure by genetic algorithm method. Journal of Experimental Nanoscience, 2014, 9, 966-981.	2.4	4
87	Prediction and Control of Wrinkles on Fabric Via Wavelet Analysis and Neural Networks. Research Journal of Textile and Apparel, 2014, 18, 15-25.	1.1	0
88	Modeling of Ionic Conductivity Enhancement of LiClO4-PVA-C System by TiO2 Addition Using Complex Numerical Model of PDE. Journal of Materials Engineering and Performance, 2013, 22, 3639-3646.	2.5	1
89	Characterizing a novel method for blending regenerated cellulose structures with polyester filaments. Journal of Applied Polymer Science, 2013, 128, 3263-3270.	2.6	2
90	Mechanical properties of polypropylene/glass weft knitted composites hot pressed in various structures and contents. Science and Engineering of Composite Materials, 2013, 20, 67-73.	1.4	5

#	Article	IF	CITATIONS
91	A Novel Rotating Ring Collector for Electro-spinning of Nanofibers in Uniform Distribution. Current Nanoscience, 2013, 9, 812-817.	1.2	1
92	Structural characterization of electrospun scaffolds by image analysis techniques. , 2012, , .		1
93	Performance prediction of a specific wear rate in epoxy nanocomposites with various composition content of polytetrafluoroethylen (PTFE), graphite, short carbon fibers (CF) and nano-TiO2 using adaptive neuro-fuzzy inference system (ANFIS). Composites Part B: Engineering, 2012, 43, 549-558.	12.0	28
94	Optimization of fiber distribution in spunbond non-woven structure. Fibers and Polymers, 2011, 12, 821-829.	2.1	12
95	Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm. Journal of Applied Polymer Science, 2011, 120, 735-744.	2.6	20
96	Improvement of intelligent methods for evaluating the apparent quality of knitted fabrics. Engineering Applications of Artificial Intelligence, 2010, 23, 217-221.	8.1	18
97	A novel method for the determination of cell infiltration into nanofiber scaffolds using image analysis for tissue engineering applications. Journal of Applied Polymer Science, 2009, 111, 317-322.	2.6	15
98	Moisture and heat transfer in hybrid weft knitted fabric with artificial intelligence. Journal of Applied Polymer Science, 2009, 114, 1731-1737.	2.6	7
99	Introducing two simple models for predicting fiberâ€reinforced asphalt concrete behavior during longitudinal loads. Journal of Applied Polymer Science, 2008, 109, 2872-2881.	2.6	25
100	Wrinkled fabric appearance in uniform waveform by hybrid yarns. Journal of the Textile Institute, 2008, 99, 89-92.	1.9	1
101	Grading of Yarn Appearance Using Image Analysis and an Artificial Intelligence Technique. Textile Reseach Journal, 2006, 76, 187-196.	2.2	16
102	Silk Fibroin Nano-Coated Textured Silk Yarn by Electrospinning Method for Tendon and Ligament Scaffold Application. Nano Hybrids, 0, 7, 35-51.	0.3	6