Mirjam Czjzek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976468/publications.pdf

Version: 2024-02-01

		394286	414303
33	1,459	19	32
papers	citations	h-index	g-index
37	37	37	1604
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity. PLoS ONE, 2016, 11, e0164846.	1.1	147
2	Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algaeâ€essociated bacterium ⟨i>Zobellia galactanivorans⟨li> Dsij⟨sup>T⟨ sup⟩. Environmental Microbiology, 2016, 18, 4610-4627.	1.8	131
3	Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nature Communications, 2017, 8, 1685.	5.8	131
4	A subfamily roadmap of the evolutionarily diverse glycoside hydrolase family 16 (GH16). Journal of Biological Chemistry, 2019, 294, 15973-15986.	1.6	118
5	A sweet new wave: structures and mechanisms of enzymes that digest polysaccharides from marine algae. Current Opinion in Structural Biology, 2014, 28, 77-86.	2.6	112
6	How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7037-7042.	3.3	99
7	A single sulfatase is required to access colonic mucin by a gut bacterium. Nature, 2021, 598, 332-337.	13.7	87
8	A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66T Encoded in a Sizeable Polysaccharide Utilization Locus. Frontiers in Microbiology, 2018, 9, 839.	1.5	73
9	Insoluble (1 → 3), (1 → 4)-β-D-glucan is a component of cell walls in brown algae (Phaeophy by alginates in tissues. Scientific Reports, 2017, 7, 2880.	ceae) and	is masked
10	Continually emerging mechanistic complexity of the multi-enzyme cellulosome complex. Current Opinion in Structural Biology, 2017, 44, 151-160.	2.6	47
11	The Vanadium Iodoperoxidase from the Marine Flavobacteriaceae Species Zobellia galactanivorans Reveals Novel Molecular and Evolutionary Features of Halide Specificity in the Vanadium Haloperoxidase Enzyme Family. Applied and Environmental Microbiology, 2014, 80, 7561-7573.	1.4	46
12	Nanoscale Engineering of Designer Cellulosomes. Advanced Materials, 2016, 28, 5619-5647.	11.1	42
13	The cell-wall active mannuronan C5-epimerases in the model brown alga <i>Ectocarpus</i> : From gene context to recombinant protein. Glycobiology, 2016, 26, 973-983.	1.3	38
14	Structural insights into marine carbohydrate degradation by family GH16 \hat{I}^2 -carrageenases. Journal of Biological Chemistry, 2017, 292, 19919-19934.	1.6	38
15	Structural and biochemical characterization of the laminarinase <i>Zg</i> LamC _{GH16} from <i>Zobellia galactanivorans</i> suggests preferred recognition of branched laminarin. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 173-184.	2.5	34
16	The agar-specific hydrolase ZgAgaC from the marine bacterium Zobellia galactanivorans defines a new GH16 protein subfamily. Journal of Biological Chemistry, 2019, 294, 6923-6939.	1.6	32
17	Discovery and screening of novel metagenomeâ€derived <scp>GH</scp> 107 enzymes targeting sulfated fucans from brown algae. FEBS Journal, 2018, 285, 4281-4295.	2.2	31
18	Online coupling of high-resolution chromatography with extreme UV photon activation tandem mass spectrometry: Application to the structural investigation of complex glycans by dissociative photoionization. Analytica Chimica Acta, 2016, 933, 1-9.	2.6	24

#	Article	IF	Citations
19	Internal Water Dynamics Control the Transglycosylation/Hydrolysis Balance in the Agarase (AgaD) of <i>Zobellia galactanivorans</i>	5.5	23
20	Biochemical and structural investigation of two paralogous glycoside hydrolases from <i>Zobellia galactanivorans </i> : novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 209-223.	2.5	18
21	Double blind microarray-based polysaccharide profiling enables parallel identification of uncharacterized polysaccharides and carbohydrate-binding proteins with unknown specificities. Scientific Reports, 2018, 8, 2500.	1.6	18
22	Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. Journal of Structural Biology, 2015, 191, 68-75.	1.3	17
23	Unraveling the multivalent binding of a marine family 6 carbohydrateâ€binding module with its native laminarin ligand. FEBS Journal, 2016, 283, 1863-1879.	2.2	16
24	Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. Nature Chemical Biology, 2022, 18, 841-849.	3.9	16
25	Structure–function analysis of a new PL17 oligoalginate lyase from the marine bacterium <i>Zobellia galactanivorans</i> DsijT. Glycobiology, 2021, 31, 1364-1377.	1.3	12
26	A novel thermostable prokaryotic fucoidan active sulfatase PsFucS1 with an unusual quaternary hexameric structure. Scientific Reports, 2021, 11, 19523.	1.6	8
27	Nigritoxin is a bacterial toxin for crustaceans and insects. Nature Communications, 2017, 8, 1248.	5.8	7
28	The laterally acquired GH5 <i>Zg</i> EngAGH5_4 from the marine bacterium <i>Zobellia galactanivorans</i> is dedicated to hemicellulose hydrolysis. Biochemical Journal, 2018, 475, 3609-3628.	1.7	7
29	A wine-induced breakdown. Nature, 2017, 544, 45-46.	13.7	6
30	Structural and enzymatic characterisation of the Type III effector NopAA (=GunA) from Sinorhizobium fredii USDA257 reveals a Xyloglucan hydrolase activity. Scientific Reports, 2020, 10, 9932.	1.6	6
31	X-ray Diffraction and Density Functional Theory Provide Insight into Vanadate Binding to Homohexameric Bromoperoxidase II and the Mechanism of Bromide Oxidation. ACS Chemical Biology, 2018, 13, 1243-1259.	1.6	4
32	Mapping the deformability of natural and designed cellulosomes in solution. , 2022, 15, .		4
33	Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography. Methods in Molecular Biology, 2017, 1588, 239-253.	0.4	3