List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5976196/publications.pdf Version: 2024-02-01

AMY LAYNE MCKNICHT

#	Article	IF	CITATIONS
1	Genetic studies of body mass index yield new insights for obesity biology. Nature, 2015, 518, 197-206.	13.7	3,823
2	New genetic loci link adipose and insulin biology to body fat distribution. Nature, 2015, 518, 187-196.	13.7	1,328
3	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	13.7	353
4	New Susceptibility Loci Associated with Kidney Disease in Type 1 Diabetes. PLoS Genetics, 2012, 8, e1002921.	1.5	216
5	Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: a multi-cohort analysis. Aging, 2019, 11, 2045-2070.	1.4	137
6	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.3	136
7	Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen. Journal of the American Society of Nephrology: JASN, 2019, 30, 2000-2016.	3.0	135
8	DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics, 2014, 9, 366-376.	1.3	133
9	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
10	Multiple Superoxide Dismutase 1/Splicing Factor Serine Alanine 15 Variants Are Associated With the Development and Progression of Diabetic Nephropathy. Diabetes, 2008, 57, 218-228.	0.3	89
11	Association Testing of Previously Reported Variants in a Large Case-Control Meta-analysis of Diabetic Nephropathy. Diabetes, 2012, 61, 2187-2194.	0.3	77
12	Genetic Susceptibility to Chronic Kidney Disease – Some More Pieces for the Heritability Puzzle. Frontiers in Genetics, 2019, 10, 453.	1.1	74
13	ANCA-associated vasculitis is linked to carriage of the Z allele of α ₁ antitrypsin and its polymers. Annals of the Rheumatic Diseases, 2011, 70, 1851-1856.	0.5	69
14	Genetics of New-Onset Diabetes after Transplantation. Journal of the American Society of Nephrology: JASN, 2014, 25, 1037-1049.	3.0	67
15	Chromosome 2q31.1 Associates with ESRD in Women with Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2013, 24, 1537-1543.	3.0	66
16	Association of Caveolin-1 Gene Polymorphism With Kidney Transplant Fibrosis and Allograft Failure. JAMA - Journal of the American Medical Association, 2010, 303, 1282.	3.8	65
17	Donor ABCB1 Variant Associates with Increased Risk for Kidney Allograft Failure. Journal of the American Society of Nephrology: JASN, 2012, 23, 1891-1899.	3.0	65
18	Genetic Evidence for a Causal Role of Obesity in Diabetic Kidney Disease. Diabetes, 2015, 64, 4238-4246.	0.3	63

#	Article	IF	CITATIONS
19	Genomic Mismatch at <i>LIMS1</i> Locus and Kidney Allograft Rejection. New England Journal of Medicine, 2019, 380, 1918-1928.	13.9	63
20	Genetic Examination of SETD7 and SUV39H1/H2 Methyltransferases and the Risk of Diabetes Complications in Patients With Type 1 Diabetes. Diabetes, 2011, 60, 3073-3080.	0.3	62
21	A Population-Based Study of ICF Axis Polymorphisms and the Esophageal Inflammation, Metaplasia, Adenocarcinoma Sequence. Gastroenterology, 2010, 139, 204-212.e3.	0.6	60
22	Epigenome-Wide Association Study for Parkinson's Disease. NeuroMolecular Medicine, 2014, 16, 845-855.	1.8	57
23	A GREM1 Gene Variant Associates with Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2010, 21, 773-781.	3.0	56
24	Genome-wide association meta-analysis for early age-related macular degeneration highlights novel loci and insights for advanced disease. BMC Medical Genomics, 2020, 13, 120.	0.7	56
25	An Excess of Risk-Increasing Low-Frequency Variants Can Be a Signal of Polygenic Inheritance in Complex Diseases. American Journal of Human Genetics, 2014, 94, 437-452.	2.6	55
26	Genetic and epigenetic factors influencing chronic kidney disease. American Journal of Physiology - Renal Physiology, 2014, 307, F757-F776.	1.3	53
27	Distinct methylation patterns in genes that affect mitochondrial function are associated with kidney disease in bloodâ€derived <scp>DNA</scp> from individuals with TypeÂ1 diabetes. Diabetic Medicine, 2015, 32, 1110-1115.	1.2	52
28	Genome-wide association study of urinary albumin excretion rate in patients with type 1 diabetes. Diabetologia, 2014, 57, 1143-1153.	2.9	50
29	A Genome-Wide DNA Microsatellite Association Screen to Identify Chromosomal Regions Harboring Candidate Genes in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2006, 17, 831-836.	3.0	44
30	SORBS1 gene, a new candidate for diabetic nephropathy: results from a multi-stage genome-wide association study in patients with type 1 diabetes. Diabetologia, 2015, 58, 543-548.	2.9	43
31	Genetic associations between genes in the renin-angiotensin-aldosterone system and renal disease: a systematic review and meta-analysis. BMJ Open, 2019, 9, e026777.	0.8	42
32	Whole-mitochondrial genome sequencing in primary open-angle glaucoma using massively parallel sequencing identifies novel and known pathogenic variants. Genetics in Medicine, 2015, 17, 279-284.	1.1	38
33	Contribution of cystatin C- and creatinine-based definitions of chronic kidney disease to cardiovascular risk assessment in 20 population-based and 3 disease cohorts: the BiomarCaRE project. BMC Medicine, 2020, 18, 300.	2.3	38
34	Proteomic and metabolomic approaches in the search for biomarkers in chronic kidney disease. Journal of Proteomics, 2019, 193, 93-122.	1.2	37
35	Communication Needs for Individuals With Rare Diseases Within and Around the Healthcare System of Northern Ireland. Frontiers in Public Health, 2019, 7, 236.	1.3	35
36	Comparative analysis of DNA methylation profiles in peripheral blood leukocytes versus lymphoblastoid cell lines. Epigenetics, 2009, 4, 159-164.	1.3	34

#	Article	IF	CITATIONS
37	A rare haplotype of the vitamin D receptor gene is protective against diabetic nephropathy. Nephrology Dialysis Transplantation, 2010, 25, 497-503.	0.4	34
38	Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. Journal of Pathology, 2010, 220, 198-216.	2.1	33
39	Resequencing of genes for transforming growth factor \hat{I}^21 (TGFB1) type 1 and 2 receptors (TGFBR1,) Tj ETQq1 1 8, 5.	0.784314 2.1	rgBT /Overlo 32
40	Genetic and Epigenetic Risk Factors for Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 2014, 21, 287-296.	0.6	30
41	Genetics of Diabetic Nephropathy: a Long Road of Discovery. Current Diabetes Reports, 2015, 15, 41.	1.7	30
42	Novel risk genes identified in a genome-wide association study for coronary artery disease in patients with type 1 diabetes. Cardiovascular Diabetology, 2018, 17, 61.	2.7	29
43	Epigenetics. Transplantation, 2012, 94, 1-7.	0.5	28
44	Polygenic risk score as a determinant of risk of non-melanoma skin cancer in a European-descent renal transplant cohort. American Journal of Transplantation, 2019, 19, 801-810.	2.6	26
45	Improvements needed to support people living and working with a rare disease in Northern Ireland: current rare disease support perceived as inadequate. Orphanet Journal of Rare Diseases, 2020, 15, 315.	1.2	26
46	A scoping review and proposed workflow for multi-omic rare disease research. Orphanet Journal of Rare Diseases, 2020, 15, 107.	1.2	24
47	Association of Genetic Variants at 3q22 with Nephropathy in Patients with Type 1 Diabetes Mellitus. American Journal of Human Genetics, 2009, 84, 5-13.	2.6	23
48	A Validation Study of Vascular Cognitive Impairment Genetics Meta-Analysis Findings in an Independent Collaborative Cohort. Journal of Alzheimer's Disease, 2016, 53, 981-989.	1.2	22
49	A HuGE Review and Meta-Analyses of Genetic Associations in New Onset Diabetes after Kidney Transplantation. PLoS ONE, 2016, 11, e0147323.	1.1	22
50	Association of VEGF-1499C→T polymorphism with diabetic nephropathy in type 1 diabetes mellitus. Journal of Diabetes and Its Complications, 2007, 21, 242-245.	1.2	21
51	Investigation of <i>ACE</i> , <i>ACE2</i> and <i>AGTR1</i> genes for association with nephropathy in Type $\hat{a} \in f1$ diabetes mellitus. Diabetic Medicine, 2010, 27, 1188-1194.	1.2	21
52	SNP in the genome-wide association study hotspot on chromosome 9p21 confers susceptibility to diabetic nephropathy in type 1 diabetes. Diabetologia, 2012, 55, 2386-2393.	2.9	21
53	Vitamin D Receptor Gene Variants and Esophageal Adenocarcinoma Risk: A Population-Based Case–Control Study. Journal of Gastrointestinal Cancer, 2012, 43, 512-517.	0.6	20
54	Annotated chromosome maps for renal disease. Human Mutation, 2009, 30, 314-320.	1.1	19

#	Article	IF	CITATIONS
55	Novel genetic susceptibility loci for diabetic end-stage renal disease identified through robust naive Bayes classification. Diabetologia, 2014, 57, 1611-1622.	2.9	19
56	DNA Methylation Associated With Diabetic Kidney Disease in Blood-Derived DNA. Frontiers in Cell and Developmental Biology, 2020, 8, 561907.	1.8	19
57	Association Analysis of Dyslipidemia-Related Genes in Diabetic Nephropathy. PLoS ONE, 2013, 8, e58472.	1.1	19
58	Investigation of DNA polymorphisms in SMAD genes for genetic predisposition to diabetic nephropathy in patients with type 1 diabetes mellitus. Diabetologia, 2009, 52, 844-849.	2.9	17
59	Targeted genome-wide investigation identifies novel SNPs associated with diabetic nephropathy. The HUGO Journal, 2009, 3, 77-82.	4.1	16
60	Genome-wide meta-analysis and omics integration identifies novel genes associated with diabetic kidney disease. Diabetologia, 2022, 65, 1495-1509.	2.9	16
61	Genetic Polymorphisms in Nitric Oxide Synthase 3 Gene and Implications for Kidney Disease: A Meta-Analysis. American Journal of Nephrology, 2010, 32, 476-481.	1.4	15
62	Evaluation of Five Interleukin Genes for Association with End-Stage Renal Disease in White Europeans. American Journal of Nephrology, 2010, 32, 103-108.	1.4	15
63	Information on Genetic Variants Does Not Increase Identification of Individuals at Risk of Esophageal Adenocarcinoma Compared to Clinical Risk Factors. Gastroenterology, 2019, 156, 43-45.	0.6	15
64	A quick reference guide for rare disease: supporting rare disease management in general practice. British Journal of General Practice, 2020, 70, 260-261.	0.7	15
65	Association analysis of Notch pathway signalling genes in diabetic nephropathy. Diabetologia, 2011, 54, 334-338.	2.9	14
66	Next-generation sequencing of the mitochondrial genome and association with IgA nephropathy in a renal transplant population. Scientific Reports, 2014, 4, 7379.	1.6	14
67	Genetic risk factors affecting mitochondrial function are associated with kidney disease in people with Type 1 diabetes. Diabetic Medicine, 2015, 32, 1104-1109.	1.2	14
68	The Challenges of Chromosome Y Analysis and the Implications for Chronic Kidney Disease. Frontiers in Genetics, 2019, 10, 781.	1.1	14
69	Genetic association analyses of non-synonymous single nucleotide polymorphisms in diabetic nephropathy. Diabetologia, 2008, 51, 1998-2002.	2.9	13
70	Genetic polymorphisms and kidney transplant outcomes. Current Opinion in Nephrology and Hypertension, 2014, 23, 605-610.	1.0	13
71	The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population. American Journal of Transplantation, 2019, 19, 2262-2273.	2.6	13
72	Carer reported experiences: Supporting someone with a rare disease. Health and Social Care in the Community, 2022, 30, 1097-1108.	0.7	13

#	Article	IF	CITATIONS
73	Genome-wide association study on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a risk locus. Cardiovascular Research, 2021, 117, 600-612.	1.8	12
74	Role of Â-adducin DNA polymorphisms in the genetic predisposition to diabetic nephropathy. Nephrology Dialysis Transplantation, 2004, 19, 2019-2024.	0.4	11
75	Resequencing of the characterised CTGF gene to identify novel or known variants, and analysis of their association with diabetic nephropathy. Journal of Human Genetics, 2006, 51, 383-386.	1.1	11
76	Association Analysis of Canonical Wnt Signalling Genes in Diabetic Nephropathy. PLoS ONE, 2011, 6, e23904.	1.1	11
77	Haplotype association analysis of genes within the WNT signalling pathways in diabetic nephropathy. BMC Nephrology, 2013, 14, 126.	0.8	11
78	Validation of differentially methylated microRNAs identified from an epigenome-wide association study; Sanger and next generation sequencing approaches. BMC Research Notes, 2018, 11, 767.	0.6	11
79	Polymorphisms of the macrophage migration inhibitory factor gene in a UK population with Type 1 diabetes mellitus. Diabetic Medicine, 2010, 27, 143-149.	1.2	10
80	Association of MYH9/APOL1 with chronic kidney disease in a UK population. Nephrology Dialysis Transplantation, 2012, 27, 3660-3660.	0.4	10
81	Differential methylation as a diagnostic biomarker of rare renal diseases: a systematic review. BMC Nephrology, 2019, 20, 320.	0.8	10
82	Gene discovery in diabetic nephropathy. Current Diabetes Reports, 2007, 7, 139-145.	1.7	9
83	Investigation of the association of <i>BMP</i> gene variants with nephropathy in Type 1 diabetes mellitus. Diabetic Medicine, 2010, 27, 624-630.	1.2	9
84	Resequencing of the CCL5 and CCR5 genes and investigation of variants for association with diabetic nephropathy. Journal of Human Genetics, 2010, 55, 248-251.	1.1	9
85	Analysis of single nucleotide polymorphisms implicate mTOR signalling in the development of new-onset diabetes after transplantation. BBA Clinical, 2016, 5, 41-45.	4.1	9
86	The Role of Epigenetic Clocks in Explaining Educational Inequalities in Mortality: A Multicohort Study and Meta-analysis. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2022, 77, 1750-1759.	1.7	9
87	BACE1 Polymorphisms Do Not Influence Platelet Membrane β-secretase Activity or Genetic Susceptibility for Alzheimer's Disease in the Northern Irish Population. NeuroMolecular Medicine, 2008, 10, 368-376.	1.8	8
88	CD2AP is associated with end-stage renal disease in patients with type 1 diabetes. Acta Diabetologica, 2013, 50, 887-897.	1.2	8
89	Variation in RTN3 and PPIL2 Genes Does not Influence Platelet Membrane β-Secretase Activity or Susceptibility to Alzheimer's Disease in the Northern Irish Population. NeuroMolecular Medicine, 2009, 11, 337-344.	1.8	7
90	Evaluating the impact of COVID-19 on rare disease support groups. BMC Research Notes, 2021, 14, 168.	0.6	7

#	Article	IF	CITATIONS
91	The Changing Landscape of Diabetic Kidney Disease: New Reflections on Phenotype, Classification, and Disease Progression to Influence Future Investigative Studies and Therapeutic Trials. Advances in Chronic Kidney Disease, 2014, 21, 256-259.	0.6	6
92	Investigation ofAdducin 2 (beta)DNA polymorphisms in genetic predisposition to diabetic nephropathy in Type 1 diabetes. Diabetic Medicine, 2008, 25, 1001-1005.	1.2	5
93	Genetic analysis of coronary artery disease single-nucleotide polymorphisms in diabetic nephropathy. Nephrology Dialysis Transplantation, 2009, 24, 2473-2476.	0.4	5
94	β Cell Glucotoxic-Associated Single Nucleotide Polymorphisms in Impaired Glucose Tolerance and New-Onset Diabetes After Transplantation. Transplantation, 2014, 98, e19-e20.	0.5	5
95	Systematic review of differential methylation in rare ophthalmic diseases. BMJ Open Ophthalmology, 2019, 4, e000342.	0.8	5
96	Comprehensive Investigation of the Caveolin 2 Gene: Resequencing and Association for Kidney Transplant Outcomes. PLoS ONE, 2013, 8, e63358.	1.1	5
97	Caveolin-1 Single Nucleotide Polymorphism in Antineutrophil Cytoplasmic Antibody Associated Vasculitis. PLoS ONE, 2013, 8, e69022.	1.1	5
98	Communication strategies for rare cancers: a systematic review protocol. Systematic Reviews, 2019, 8, 102.	2.5	4
99	Development of next generation sequencing panel for UMOD and association with kidney disease. PLoS ONE, 2017, 12, e0178321.	1.1	4
100	No support for association of protein kinaseÂC, betaÂ1 (<i>PRKCB1</i>) gene promoter polymorphisms c.–1504C>T and c.–546C>G with diabetic nephropathy in TypeÂ1 diabetes. Diabetic Medicine, 2008, 2 1127-1129.	25,1.2	3
101	Association analysis of proopiomelanocortin (POMC) haplotypes in type 1 diabetes in a UK population. Diabetes and Metabolism, 2011, 37, 298-304.	1.4	3
102	"Mitochondrial Toolbox―– A Review of Online Resources to Explore Mitochondrial Genomics. Frontiers in Genetics, 2020, 11, 439.	1.1	3
103	Review of Genetic Association in the SOD2 Gene with Chronic Kidney Disease: Case-Control Studies and Meta-Analysis Confirm Association with Diabetic Nephropathy. Nephrology Research & Reviews, 2012, 4, 51-54.	0.2	2
104	Design and implementation of a custom next generation sequencing panel for selected vitamin D associated genes. BMC Research Notes, 2017, 10, 348.	0.6	2
105	Protocol for a scoping review of multi-omic analysis for rare diseases. BMJ Open, 2019, 9, e026278.	0.8	2
106	Differential methylation in rare ophthalmic disorders: a systematic review protocol. Systematic Reviews, 2019, 8, 93.	2.5	2
107	Comparison of methylation patterns generated from genomic and cell-line derived DNA using the Illumina Infinium MethylationEPIC BeadChip array. BMC Research Notes, 2019, 12, 821.	0.6	2
108	Bioinformatic Resources For Diabetic Nephropathy. Journal of Bioinformatics and Diabetes, 2013, 1, 11-18.	0.5	2

#	Article	IF	CITATIONS
109	Association of microsatellite markers on chromosomes 6q27 region and 10p15 region with end-stage renal disease in a UK renal transplant population. Journal of Human Genetics, 2009, 54, 497-498.	1.1	1
110	Mitochondria and Chronic Kidney Disease: A Molecular Update. , 2019, , .		1
111	An investigation into DNA methylation patterns associated with risk preference in older individuals. Epigenetics, 2022, 17, 1159-1172.	1.3	1
112	A Formative Study of the Implementation of Whole Genome Sequencing in Northern Ireland. Genes, 2022, 13, 1104.	1.0	1
113	Harnessing the Full Potential of Multi-Omic Analyses to Advance the Study and Treatment of Chronic Kidney Disease. , 0, 2, .		1
114	The coronary artery disease SNP, rs4420638, is associated with diabetic nephropathy rather than end-stage renal disease. Nephrology Dialysis Transplantation, 2009, 24, 3256-3256.	0.4	0
115	Replication studies based on findings from a genome-wide DNA microsatellite screen in diabetic nephropathy. Diabetes and Metabolism, 2009, 35, 237-238.	1.4	Ο
116	New onset diabetes after transplantation: unravelling the pathophysiological process. Lancet, The, 2014, 383, S73.	6.3	0
117	Genetic Investigation of Major Histocompatibility Complex Class-I Related RAET1 Genes for Association in a Glomerulonephritis Population. Nephrology Research & Reviews, 2012, 4, 48-50.	0.2	0
118	Perceptions and experiences of rare diseases among the GP population in Northern Ireland. British Journal of General Practice, 2019, 69, bjgp19X703637.	0.7	0
119	Genetic Strategies to Understand Human Diabetic Nephropathy: In Silico Strategies for Molecular Data—Association Studies. Methods in Molecular Biology, 2020, 2067, 241-275.	0.4	Ο
120	Genetic Strategies to Understand Human Diabetic Nephropathy: Wet-Lab Approaches. Methods in Molecular Biology, 2020, 2067, 205-240.	0.4	0