Lin Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975662/publications.pdf

Version: 2024-02-01

		172457	161849
56	3,028	29	54
papers	citations	h-index	g-index
56	56	56	3719
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Tumorâ€Microenvironmentâ€Activated Nanozymeâ€Mediated Theranostic Nanoreactor for Imagingâ€Guided Combined Tumor Therapy. Advanced Materials, 2019, 31, e1902885.	21.0	246
2	One-step preparation of reduction-responsive poly(ethylene glycol)-poly(amino acid)s nanogels as efficient intracellular drug delivery platforms. Polymer Chemistry, 2011, 2, 2857.	3.9	220
3	Ultrasensitive pH Triggered Charge/Size Dual-Rebound Gene Delivery System. Nano Letters, 2016, 16, 6823-6831.	9.1	179
4	BSAâ€IrO ₂ : Catalaseâ€Iike Nanoparticles with High Photothermal Conversion Efficiency and a High Xâ€ray Absorption Coefficient for Antiâ€inflammation and Antitumor Theranostics. Angewandte Chemie - International Edition, 2018, 57, 10309-10313.	13.8	162
5	Porphyrin-based covalent organic framework nanoparticles for photoacoustic imaging-guided photodynamic and photothermal combination cancer therapy. Biomaterials, 2019, 223, 119459.	11.4	157
6	A pH-Responsive Detachable PEG Shielding Strategy for Gene Delivery System in Cancer Therapy. Biomacromolecules, 2017, 18, 1342-1349.	5.4	113
7	Covalent Organic Nanosheets Integrated Heterojunction with Two Strategies To Overcome Hypoxic-Tumor Photodynamic Therapy. Chemistry of Materials, 2019, 31, 3313-3323.	6.7	111
8	Molecular Strings Significantly Improved the Gene Transfection Efficiency of Polycations. Journal of the American Chemical Society, 2018, 140, 11992-12000.	13.7	105
9	Gold Nanorods Electrostatically Binding Nucleic Acid Probe for In Vivo MicroRNA Amplified Detection and Photoacoustic Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2018, 28, 1800490.	14.9	100
10	pH-responsive zwitterionic copolypeptides as charge conversional shielding system for gene carriers. Journal of Controlled Release, 2014, 174, 117-125.	9.9	99
11	Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase. Biomaterials, 2018, 171, 198-206.	11.4	98
12	Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-1093.	4.3	97
13	Cyanine-Assisted Exfoliation of Covalent Organic Frameworks in Nanocomposites for Highly Efficient Chemo-Photothermal Tumor Therapy. ACS Applied Materials & Emp; Interfaces, 2019, 11, 39503-39512.	8.0	93
14	Pulmonary delivery by exploiting doxorubicin and cisplatin co-loaded nanoparticles for metastatic lung cancer therapy. Journal of Controlled Release, 2019, 295, 153-163.	9.9	87
15	An immune cocktail therapy to realize multiple boosting of the cancer-immunity cycle by combination of drug/gene delivery nanoparticles. Science Advances, 2020, 6, .	10.3	81
16	Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216, 119255.	11.4	68
17	A GSHâ€Gated DNA Nanodevice for Tumorâ€Specific Signal Amplification of microRNA and MR Imaging–Guided Theranostics. Small, 2019, 15, e1903016.	10.0	58
18	Synergistic tumor immunological strategy by combining tumor nanovaccine with gene-mediated extracellular matrix scavenger. Biomaterials, 2020, 252, 120114.	11.4	58

#	Article	IF	Citations
19	Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. Journal of Controlled Release, 2020, 328, 631-639.	9.9	56
20	Charge-conversional zwitterionic copolymer as pH-sensitive shielding system for effective tumor treatment. Acta Biomaterialia, 2015, 26, 45-53.	8.3	54
21	Efficient PD-L1 gene silence promoted by hyaluronidase for cancer immunotherapy. Journal of Controlled Release, 2019, 293, 104-112.	9.9	51
22	Gold-Nanorods-Based Gene Carriers with the Capability of Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31558-31566.	8.0	48
23	Combining mannose receptor mediated nanovaccines and gene regulated PD-L1 blockade for boosting cancer immunotherapy. Bioactive Materials, 2022, 7, 167-180.	15.6	46
24	Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo. Nature Communications, 2021, 12, 6742.	12.8	45
25	Ionic-crosslinked polysaccharide/PEI/DNA nanoparticles for stabilized gene delivery. Carbohydrate Polymers, 2018, 201, 246-256.	10.2	40
26	Polylysine-modified polyethylenimines as siRNA carriers for effective tumor treatment. Chinese Journal of Polymer Science (English Edition), 2015, 33, 830-837.	3.8	36
27	Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials, 2019, 223, 119470.	11.4	36
28	In situ dual-crosslinked nanoparticles for tumor targeting gene delivery. Acta Biomaterialia, 2018, 65, 349-362.	8.3	35
29	BSAâ€IrO ₂ : Catalaseâ€Iike Nanoparticles with High Photothermal Conversion Efficiency and a High Xâ€ray Absorption Coefficient for Antiâ€Inflammation and Antitumor Theranostics. Angewandte Chemie, 2018, 130, 10466-10470.	2.0	31
30	A Strategy of Killing Three Birds with One Stone for Cancer Therapy through Regulating the Tumor Microenvironment by H ₂ O ₂ Responsive Gene Delivery System. ACS Applied Materials & Delivery System. ACS Applied Materials & Delivery System. ACS Applied Materials & Delivery System.	8.0	31
31	Highly Fluorescent Gene Carrier Based on Ag–Au Alloy Nanoclusters. Macromolecular Bioscience, 2016, 16, 160-167.	4.1	28
32	Macrophages loaded CpG and GNR-PEI for combination of tumor photothermal therapy and immunotherapy. Science China Materials, 2018, 61, 1484-1494.	6.3	28
33	Effective Eradication of Tumors by Enhancing Photoacousticâ€Imagingâ€Guided Combined Photothermal Therapy and Ultrasonic Therapy. Advanced Functional Materials, 2021, 31, 2009314.	14.9	28
34	pH-Responsive Zwitterionic Copolymer DHA–PBLG–PCB for Targeted Drug Delivery: A Computer Simulation Study. Langmuir, 2019, 35, 1944-1953.	3.5	27
35	pH Triggered Size Increasing Gene Carrier for Efficient Tumor Accumulation and Excellent Antitumor Effect. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15297-15306.	8.0	26
36	Helix Self-Assembly Behavior of Amino Acid-Modified Camptothecin Prodrugs and Its Antitumor Effect. ACS Applied Materials & Earny; Interfaces, 2020, 12, 7466-7476.	8.0	26

#	Article	IF	Citations
37	Polyglutamic acid based polyanionic shielding system for polycationic gene carriers. Chinese Journal of Polymer Science (English Edition), 2016, 34, 316-323.	3.8	25
38	Poly(<scp>l</scp> -glutamic acid)-Based Zwitterionic Polymer in a Charge Conversional Shielding System for Gene Therapy of Malignant Tumors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19295-19306.	8.0	23
39	Covalent organic framework nanoparticles for anti-tumor gene therapy. Science China Chemistry, 2021, 64, 1235-1241.	8.2	22
40	Highly Enhanced Antitumor Immunity by a Three-Barreled Strategy of the <scp>I</scp> -Arginine-Promoted Nanovaccine and Gene-Mediated PD-L1 Blockade. ACS Applied Materials & amp; Interfaces, 2020, 12, 41127-41137.	8.0	19
41	Cationic Flexible Organic Framework for Combination of Photodynamic Therapy and Genetic Immunotherapy Against Tumors. Small, 2021, 17, e2008125.	10.0	19
42	Robust Fuel Catalyzed DNA Molecular Machine for in Vivo MicroRNA Detection. Advanced Biology, 2017, 1, 1700060.	3.0	18
43	Doxorubicin-loaded PLGA microparticles with internal pores for long-acting release in pulmonary tumor inhalation treatment. Chinese Journal of Polymer Science (English Edition), 2015, 33, 947-954.	3.8	14
44	pH-Responsive Natural Polymeric Gene Delivery Shielding System Based on Dynamic Covalent Chemistry. ACS Biomaterials Science and Engineering, 2018, 4, 193-199.	5.2	12
45	Hyperbranched PEI grafted by hydrophilic amino acid segment poly[<i>N</i> à€(2â€hydroxyethyl)â€ <scp>L</scp> â€glutamine] as an efficient nonviral gene carrier. Journal of Applied Polymer Science, 2012, 123, 2257-2265.	2.6	10
46	Combination therapy of pDNA and siRNA by versatile carriers composed of poly(<scp>I</scp> -serine) modified polyethylenimines. Materials Chemistry Frontiers, 2017, 1, 937-946.	5.9	10
47	Guanidinated Thioureaâ€Decorated Polyethylenimines for Enhanced Membrane Penetration and Efficient siRNA Delivery. Advanced Healthcare Materials, 2015, 4, 1369-1375.	7.6	9
48	Poly(ethylene glycol)-poly- <scp>l</scp> -glutamate complexed with polyethyleneimineâ^'polyglycine for highly efficient gene delivery <i>in vitro</i> and <i>in vivo</i> . Biomaterials Science, 2018, 6, 3053-3062.	5.4	9
49	Bioreducible crosslinked low molecular weight branched PEI-PBLG as an efficient gene carrier. Science China Chemistry, 2010, 53, 2490-2496.	8.2	8
50	Synthetic Helical Polypeptide as a Gene Transfection Enhancer. Biomacromolecules, 2022, 23, 2867-2877.	5.4	7
51	Highly Effective Crosslinker for Redox-Sensitive Gene Carriers. Advances in Polymer Technology, 2021, 2021, 1-9.	1.7	5
52	pH-Triggered Sheddable Shielding System for Polycationic Gene Carriers. Polymers, 2016, 8, 141.	4.5	4
53	Exploring the in vivo fates of RGD and PEG modified PEI/DNA nanoparticles by optical imaging and optoacoustic imaging. RSC Advances, 2016, 6, 112552-112561.	3.6	4
54	Metformin booster adipocyte-targeted gene therapy for the treatment of obesity and related metabolic syndromes. Science China Chemistry, 2022, 65, 796-809.	8.2	4

#	Article	IF	CITATION
55	Sulfathiazole grafted PEG-PLL as pH-sensitive shielding system for cationic gene delivery. Polymer Bulletin, 2016, 73, 3503-3511.	3.3	1
56	Synthesis of Copolymers Polyethyleneimineâ€∢i>coà€Polyphenylalanine as Gene and Drug Codelivery Carrier. Macromolecular Bioscience, 2021, 21, e2100033.	4.1	1