Guoping Hu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5975349/guoping-hu-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 485 12 21 g-index

33 649 8 avg, IF L-index

#	Paper	IF	Citations
28	Carbon dioxide absorption into promoted potassium carbonate solutions: A review. <i>International Journal of Greenhouse Gas Control</i> , 2016 , 53, 28-40	4.2	84
27	Extraction of vanadium from chloride solution with high concentration of iron by solvent extraction using D2EHPA. <i>Separation and Purification Technology</i> , 2014 , 125, 59-65	8.3	63
26	An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. <i>Journal of Hazardous Materials</i> , 2015 , 294, 35-40	12.8	53
25	Desilication from titanium anadium slag by alkaline leaching. <i>Transactions of Nonferrous Metals Society of China</i> , 2013 , 23, 3076-3082	3.3	44
24	Enzymatic carbon dioxide capture using a thermally stable carbonic anhydrase as a promoter in potassium carbonate solvents. <i>Chemical Engineering Journal</i> , 2017 , 307, 49-55	14.7	37
23	Carbon dioxide capture by solvent absorption using amino acids: A review. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 2229-2237	3.2	31
22	A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. <i>Engineering</i> , 2020 , 6, 1364-1380	9.7	23
21	Screening Amino Acid Salts as Rate Promoters in Potassium Carbonate Solvent for Carbon Dioxide Absorption. <i>Energy & Dioxide Absorption Energy & Dioxide Absorption Energy & Dioxide Absorption Energy & Dioxide Absorption Energy & Dioxide Energy </i>	4.1	22
20	Reaction kinetics and mechanism between histidine and carbon dioxide. <i>Chemical Engineering Journal</i> , 2017 , 307, 56-62	14.7	18
19	Modelling of a post-combustion carbon dioxide capture absorber using potassium carbonate solvent in Aspen Custom Modeller. <i>Chinese Journal of Chemical Engineering</i> , 2018 , 26, 2327-2336	3.2	13
18	Nucleation kinetics of glycine promoted concentrated potassium carbonate solvents for carbon dioxide absorption. <i>Chemical Engineering Journal</i> , 2020 , 381, 122712	14.7	13
17	Enrichment of low grade CH4 from N2/CH4 mixtures using vacuum swing adsorption with activated carbon. <i>Chemical Engineering Science</i> , 2021 , 229, 116152	4.4	13
16	Precipitating Characteristics of Potassium Bicarbonate Using Concentrated Potassium Carbonate Solvent for Carbon Dioxide Capture. Part 1. Nucleation. <i>Industrial & Discrete Amp; Engineering Chemistry Research</i> , 2017 , 56, 6764-6774	3.9	12
15	Do the performance and efficiency of China's carbon emission trading market change over time?. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 33140-33160	5.1	10
14	Recent Progress on the Performance of Different Rate Promoters in Potassium Carbonate Solvents for CO2 Capture. <i>Energy Procedia</i> , 2017 , 114, 2279-2286	2.3	9
13	The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 15, 1-19	4.5	9
12	A carbonic anhydrase inspired temperature responsive polymer based catalyst for accelerating carbon capture. <i>Chemical Engineering Journal</i> , 2018 , 332, 556-562	14.7	7

LIST OF PUBLICATIONS

11	Selective removal of iron(III) from highly salted chloride acidic solutions by solvent extraction using di(2-ethylhexyl) phosphate. <i>Frontiers of Chemical Science and Engineering</i> , 2021 , 15, 528-537	4.5	6
10	Kinetics of CO2 Absorption in an Ethylethanolamine Based Solution. <i>Industrial & Description of Chemistry Research</i> , 2017 , 56, 12305-12315	3.9	5
9	Print media representations of carbon capture utilization and storage (CCUS) technology in China. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 155, 111938	16.2	4
8	Pilot scale assessment of methane capture from low concentration sources to town gas specification by pressure vacuum swing adsorption (PVSA). <i>Chemical Engineering Journal</i> , 2022 , 427, 130810	14.7	3
7	Signalling the cost of intermittency: What is the value of curtailed renewable power?. <i>Journal of Cleaner Production</i> , 2021 , 302, 126998	10.3	2
6	Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent. <i>Frontiers of Chemical Science and Engineering</i> , 2020 , 14, 415-424	4.5	1
5	Capture of dilute methane with a novel dynamic-feed dual-reflux pressure swing adsorption process. <i>AICHE Journal</i> ,e17390	3.6	1
4	Separation of He/N2/CH4 ternary mixtures by a triple-reflux pressure swing adsorption process. AICHE Journal,e17569	3.6	O
3	Distinct community assembly processes underlie significant spatiotemporal dynamics of abundant and rare bacterioplankton in the Yangtze River. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	0
2	Small step, great rewards: rethinking mining sustainability from old perspectives to new frames. Energy Sources, Part A: Recovery, Utilization and Environmental Effects,1-16	1.6	O
1	Extraction of Vanadium from Chloride Solutions Using Di (2-Ethylhexyl) Phosphate. <i>Advanced Materials Research</i> , 2013 , 785-786, 117-120	0.5	