Michael B Wheeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5975292/publications.pdf

Version: 2024-02-01

141 papers

11,415 citations

25423 59 h-index 103 g-index

147 all docs

147 docs citations

times ranked

147

14085 citing authors

#	Article	IF	CITATIONS
1	Common variants in genes involved in islet amyloid polypeptide (IAPP) processing and the degradation pathway are associated with T2DM risk: A Chinese population study. Diabetes Research and Clinical Practice, 2022, , 109235.	1.1	7
2	Prevention of Lipotoxicity in Pancreatic Islets with Gammahydroxybutyrate. Cells, 2022, 11, 545.	1.8	4
3	A protocol for studying glucose homeostasis and islet function in mice. STAR Protocols, 2022, 3, 101171.	0.5	9
4	Hypothalamic miR-1983 Targets Insulin Receptor \hat{l}^2 and the Insulin-mediated miR-1983 Increase Is Blocked by Metformin. Endocrinology, 2022, 163, .	1.4	4
5	Adaptive Changes in Glucose Homeostasis and Islet Function During Pregnancy: A Targeted Metabolomics Study in Mice. Frontiers in Endocrinology, 2022, 13, .	1.5	3
6	Prolactin and Maternal Metabolism in Women With a Recent GDM Pregnancy and Links to Future T2D: The SWIFT Study. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2652-2665.	1.8	10
7	Cardiac Autophagy Deficiency Attenuates ANP Production and Disrupts Myocardial-Adipose Cross Talk, Leading to Increased Fat Accumulation and Metabolic Dysfunction. Diabetes, 2021, 70, 51-61.	0.3	9
8	Integration of Al and traditional medicine in drug discovery. Drug Discovery Today, 2021, 26, 982-992.	3.2	20
9	Pancreatic \hat{l}^2 cellâ \in "selective zinc transporter 8 insufficiency accelerates diabetes associated with islet amyloidosis. JCI Insight, 2021, 6, .	2.3	12
10	Early overnutrition in male mice negates metabolic benefits of a diet high in monounsaturated and omega-3 fats. Scientific Reports, 2021, 11, 14032.	1.6	2
11	RGS4-Deficiency Alters Intracellular Calcium and PKA-Mediated Control of Insulin Secretion in Glucose-Stimulated Beta Islets. Biomedicines, 2021, 9, 1008.	1.4	6
12	Vascepa protects against high-fat diet-induced glucose intolerance, insulin resistance, and impaired \hat{l}^2 -cell function. IScience, 2021, 24, 102909.	1.9	12
13	Intensive lactation among women with recent gestational diabetes significantly alters the early postpartum circulating lipid profile: the SWIFT study. BMC Medicine, 2021, 19, 241.	2.3	17
14	Diminished Sphingolipid Metabolism, a Hallmark of Future Type 2 Diabetes Pathogenesis, Is Linked to Pancreatic \hat{I}^2 Cell Dysfunction. IScience, 2020, 23, 101566.	1.9	24
15	Amino acid and lipid metabolism in post-gestational diabetes and progression to type 2 diabetes: A metabolic profiling study. PLoS Medicine, 2020, 17, e1003112.	3.9	63
16	The magnesium transporter NIPAL1 is a pancreatic islet–expressed protein that conditionally impacts insulin secretion. Journal of Biological Chemistry, 2020, 295, 9879-9892.	1.6	10
17	γâ€aminobutyric acid stimulates βâ€cell proliferation through the <scp>mTORC1</scp> / <scp>p70S6K</scp> pathway, an effect amplified by <scp>Ly49</scp> , a novel γâ€aminobutyric acid type A receptor positive allosteric modulator. Diabetes, Obesity and Metabolism, 2020, 22, 2021-2031.	2.2	9
18	Cardioprotective GLP-1 metabolite prevents ischemic cardiac injury by inhibiting mitochondrial trifunctional protein-α. Journal of Clinical Investigation, 2020, 130, 1392-1404.	3.9	37

#	Article	IF	Citations
19	Underlying dyslipidemia postpartum in women with a recent GDM pregnancy who develop type 2 diabetes. ELife, 2020, 9, .	2.8	24
20	3â€carboxyâ€4â€methylâ€5â€propylâ€2â€furanpropanoic acid (CMPF) prevents high fat dietâ€induced insulin re via maintenance of hepatic lipid homeostasis. Diabetes, Obesity and Metabolism, 2019, 21, 61-72.	sistance 2.2	13
21	Unbiased data analytic strategies to improve biomarker discovery in precision medicine. Drug Discovery Today, 2019, 24, 1735-1748.	3.2	22
22	Pharmacologic or genetic activation of SIRT1 attenuates the fat-induced decrease in beta-cell function in vivo. Nutrition and Diabetes, 2019, 9, 11.	1.5	9
23	The discovery of novel predictive biomarkers and early-stage pathophysiology for the transition from gestational diabetes to type 2 diabetes. Diabetologia, 2019, 62, 687-703.	2.9	48
24	Glucoseâ€Responsiveness of Pancreatic βâ€Like (GRP βâ€L) Cells Generated from Human Pluripotent Stem Cells. Current Protocols in Human Genetics, 2019, 100, e71.	3.5	3
25	GABA promotes βâ€cell proliferation, but does not overcome impaired glucose homeostasis associated with dietâ€induced obesity. FASEB Journal, 2019, 33, 3968-3984.	0.2	40
26	Holo-lipocalin-2–derived siderophores increase mitochondrial ROS and impair oxidative phosphorylation in rat cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1576-1581.	3.3	35
27	Elevated Medium-Chain Acylcarnitines Are Associated With Gestational Diabetes Mellitus and Early Progression to Type 2 Diabetes and Induce Pancreatic β-Cell Dysfunction. Diabetes, 2018, 67, 885-897.	0.3	85
28	CMPF, a Metabolite Formed Upon Prescription Omega-3-Acid Ethyl Ester Supplementation, Prevents and Reverses Steatosis. EBioMedicine, 2018, 27, 200-213.	2.7	35
29	Glucolipotoxic conditions induce \hat{l}^2 -cell iron import, cytosolic ROS formation and apoptosis. Journal of Molecular Endocrinology, 2018, 61, 69-77.	1.1	44
30	New Roles of Syntaxin-1A in Insulin Granule Exocytosis and Replenishment. Journal of Biological Chemistry, 2017, 292, 2203-2216.	1.6	32
31	Synthesis and Characterization of Urofuranoic Acids: In Vivo Metabolism of 2-(2-Carboxyethyl)-4-methyl-5-propylfuran-3-carboxylic Acid (CMPF) and Effects on in Vitro Insulin Secretion. Journal of Medicinal Chemistry, 2017, 60, 1860-1875.	2.9	19
32	$IKK\hat{l}^2$ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents. Diabetologia, 2017, 60, 2021-2032.	2.9	12
33	Uncoupling protein 2 regulates daily rhythms of insulin secretion capacity in MIN6 cells and isolated islets from male mice. Molecular Metabolism, 2017, 6, 760-769.	3.0	24
34	An Abbreviated Protocol for In Vitro Generation of Functional Human Embryonic Stem Cell-Derived Beta-Like Cells. PLoS ONE, 2016, 11, e0164457.	1.1	21
35	A Predictive Metabolic Signature for the Transition From Gestational Diabetes Mellitus to Type 2 Diabetes. Diabetes, 2016, 65, 2529-2539.	0.3	113
36	Rapid Elevation in CMPF May Act As a Tipping Point in Diabetes Development. Cell Reports, 2016, 14, 2889-2900.	2.9	44

#	Article	IF	Citations
37	The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity. PLoS ONE, 2015, 10, e0129226.	1.1	19
38	Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2015, 290, 18757-18769.	1.6	58
39	Liver-Specific Expression of Dominant-Negative Transcription Factor 7-Like 2 Causes Progressive Impairment in Glucose Homeostasis. Diabetes, 2015, 64, 1923-1932.	0.3	48
40	LKB1 couples glucose metabolism to insulin secretion in mice. Diabetologia, 2015, 58, 1513-1522.	2.9	22
41	FFAR Out New Targets for Diabetes. Cell Metabolism, 2015, 21, 353-354.	7.2	5
42	Deletion of ARNT/HIF1 \hat{i}^2 in pancreatic beta cells does not impair glucose homeostasis in mice, but is associated with defective glucose sensing ex vivo. Diabetologia, 2015, 58, 2832-2842.	2.9	9
43	A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells. Journal of Biological Chemistry, 2015, 290, 25045-25061.	1.6	25
44	PTEN Deletion in Pancreatic α-Cells Protects Against High-Fat Diet–Induced Hyperglucagonemia and Insulin Resistance. Diabetes, 2015, 64, 147-157.	0.3	17
45	Zip4 Mediated Zinc Influx Stimulates Insulin Secretion in Pancreatic Beta Cells. PLoS ONE, 2015, 10, e0119136.	1.1	29
46	A Novel Humanized GLP-1 Receptor Model Enables Both Affinity Purification and Cre-LoxP Deletion of the Receptor. PLoS ONE, 2014, 9, e93746.	1.1	24
47	Progesterone Receptor Membrane Component 1 Is a Functional Part of the Glucagon-like Peptide-1 (GLP-1) Receptor Complex in Pancreatic \hat{l}^2 Cells. Molecular and Cellular Proteomics, 2014, 13, 3049-3062.	2.5	48
48	Isolation and Immortalization of MIP-GFP Neurons From the Hypothalamus. Endocrinology, 2014, 155, 2314-2319.	1.4	6
49	The Furan Fatty Acid Metabolite CMPF Is Elevated in Diabetes and Induces Î ² Cell Dysfunction. Cell Metabolism, 2014, 19, 653-666.	7.2	142
50	The loss of Sirt1 in mouse pancreatic beta cells impairs insulin secretion by disrupting glucose sensing. Diabetologia, 2013, 56, 2010-2020.	2.9	69
51	UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes, 2013, 62, 1623-1633.	0.3	62
52	Proinsulin Intermolecular Interactions during Secretory Trafficking in Pancreatic \hat{l}^2 Cells. Journal of Biological Chemistry, 2013, 288, 1896-1906.	1.6	77
53	Stromal Cell-Derived Factor 2 Like-1 (SDF2L1) Associates with the Endoplasmic Reticulum-Associated Degradation (ERAD) Machinery and Retards the Degradation of Mutant Proinsulin in Pancreatic \hat{l}^2 -Cells. Journal of Cell Science, 2013, 126, 1962-8.	1.2	32
54	Response to Comment on: Allister et al. UCP2 Regulates the Glucagon Response to Fasting and Starvation. Diabetes 2013;62:1623–1633. Diabetes, 2013, 62, e12-e12.	0.3	2

#	Article	IF	Citations
55	Serotonin (5-HT) Activation of Immortalized Hypothalamic Neuronal Cells Through the 5-HT1B Serotonin Receptor. Endocrinology, 2012, 153, 4862-4873.	1.4	7
56	Glutathionylation State of Uncoupling Protein-2 and the Control of Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2012, 287, 39673-39685.	1.6	57
57	Inducible Deletion of UCP2 in Pancreatic \hat{l}^2 -Cells Enhances Insulin Secretion. Canadian Journal of Diabetes, 2012, 36, 237-243.	0.4	2
58	MK-626, a dipeptidyl peptidase-4 inhibitor, does not improve the hyperglycemia or hyperinsulinemia of nonobese diabetic MKR mice. Canadian Journal of Physiology and Pharmacology, 2012, 90, 663-668.	0.7	7
59	Dual Role of VAMP8 in Regulating Insulin Exocytosis and Islet \hat{I}^2 Cell Growth. Cell Metabolism, 2012, 16, 238-249.	7.2	77
60	A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets. PLoS ONE, 2012, 7, e33023.	1.1	103
61	Stage-specific signaling through TGF \hat{l}^2 family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development (Cambridge), 2011, 138, 861-871.	1.2	350
62	\hat{I}^2 -Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion. Diabetes, 2011, 60, 2710-2719.	0.3	115
63	The Adult Mouse and Human Pancreas Contain Rare Multipotent Stem Cells that Express Insulin. Cell Stem Cell, 2011, 8, 281-293.	5.2	205
64	Regulation of glucagon secretion by zinc: lessons from the β cellâ€specific Znt8 knockout mouse model. Diabetes, Obesity and Metabolism, 2011, 13, 112-117.	2.2	44
65	Uncoupling protein-2 increases nitric oxide production and TNFAIP3 pathway activation in pancreatic islets. Journal of Molecular Endocrinology, 2011, 46, 193-204.	1.1	6
66	Stage-specific signaling through $TGF\hat{l}^2$ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Journal of Cell Science, 2011, 124, e1-e1.	1.2	0
67	Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia, 2010, 53, 1656-1668.	2.9	270
68	Insulin mimetics in <i>Urtica dioica</i> : structural and computational analyses of <i>Urtica dioica</i> extracts. Phytotherapy Research, 2010, 24, S175-82.	2.8	34
69	Adiponectin-induced ERK and Akt Phosphorylation Protects against Pancreatic Beta Cell Apoptosis and Increases Insulin Gene Expression and Secretion*. Journal of Biological Chemistry, 2010, 285, 33623-33631.	1.6	193
70	Disruption of the Dopamine D2 Receptor Impairs Insulin Secretion and Causes Glucose Intolerance. Endocrinology, 2010, 151, 1441-1450.	1.4	121
71	Molecular and Metabolic Evidence for Mitochondrial Defects Associated With \hat{I}^2 -Cell Dysfunction in a Mouse Model of Type 2 Diabetes. Diabetes, 2010, 59, 448-459.	0.3	160
72	Characterization of Erg K+ Channels in \hat{l}_{\pm} - and \hat{l}_{\pm} -Cells of Mouse and Human Islets. Journal of Biological Chemistry, 2009, 284, 30441-30452.	1.6	42

#	Article	IF	CITATIONS
73	Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants. Diabetes, 2009, 58, 2070-2083.	0.3	347
74	Metabolic effects of dietary cholesterol in an animal model of insulin resistance and hepatic steatosis. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E462-E473.	1.8	84
75	Uncoupling protein 2 regulates reactive oxygen species formation in islets and influences susceptibility to diabetogenic action of streptozotocin. Journal of Endocrinology, 2009, 203, 33-43.	1.2	44
76	Functional characterization of hyperpolarization-activated cyclic nucleotide-gated channels in rat pancreatic \hat{l}^2 cells. Journal of Endocrinology, 2009, 203, 45-53.	1.2	27
77	Zinc, a regulator of islet function and glucose homeostasis. Diabetes, Obesity and Metabolism, 2009, 11, 202-214.	2.2	130
78	Loss of Lkb1 in Adult \hat{l}^2 Cells Increases \hat{l}^2 Cell Mass and Enhances Glucose Tolerance in Mice. Cell Metabolism, 2009, 10, 285-295.	7.2	108
79	The Identification of Potential Factors Associated with the Development of Type 2 Diabetes. Molecular and Cellular Proteomics, 2008, 7, 1434-1451.	2.5	166
80	Limited Mitochondrial Permeabilization Is an Early Manifestation of Palmitate-induced Lipotoxicity in Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2008, 283, 7936-7948.	1.6	64
81	Investigation of Transport Mechanisms and Regulation of Intracellular Zn2+ in Pancreatic α-Cells. Journal of Biological Chemistry, 2008, 283, 10184-10197.	1.6	98
82	UCP2 is highly expressed in pancreatic Â-cells and influences secretion and survival. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12057-12062.	3.3	61
83	Ex vivo transcriptional profiling of human pancreatic islets following chronic exposure to monounsaturated fatty acids. Journal of Endocrinology, 2008, 196, 455-464.	1.2	40
84	Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic \hat{l}^2 -cells. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E540-E550.	1.8	132
85	Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in Pancreatic Î ² -Cells. Molecular Endocrinology, 2007, 21, 753-764.	3.7	36
86	Targeting of Voltage-Gated K+and Ca2+Channels and SolubleN-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor Proteins to Cholesterol-Rich Lipid Rafts in Pancreatic α-Cells: Effects on Glucagon Stimulus-Secretion Coupling. Endocrinology, 2007, 148, 2157-2167.	1.4	50
87	Evidence for a Role of Superoxide Generation in Glucose-Induced \hat{l}^2 -Cell Dysfunction In Vivo. Diabetes, 2007, 56, 2722-2731.	0.3	108
88	Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: additive effects of leptin or insulin. Journal of Endocrinology, 2007, 192, 605-614.	1.2	64
89	Free Fatty Acid–Induced Reduction in Glucose-Stimulated Insulin Secretion. Diabetes, 2007, 56, 2927-2937.	0.3	172
90	Thermally induced gelable polymer networks for living cell encapsulation. Biotechnology and Bioengineering, 2007, 96, 146-155.	1.7	36

#	Article	IF	Citations
91	Role of Uncoupling Protein 2 in Pancreatic _ Cell Function. Oxidative Stress and Disease, 2007, , 211-224.	0.3	0
92	Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metabolism, 2006, 3, 47-58.	7.2	257
93	Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in \hat{l}^2 -cells. Biochemical and Biophysical Research Communications, 2006, 350, 492-497.	1.0	3
94	Insulin resistance causes increased beta-cell mass but defective glucose-stimulated insulin secretion in a murine model of type 2 diabetes. Diabetologia, 2006, 49, 90-99.	2.9	61
95	α-Lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Diabetologia, 2006, 49, 1587-1598.	2.9	67
96	Oscillatory Membrane Potential Response to Glucose in Islet \hat{I}^2 -Cells: A Comparison of Islet-Cell Electrical Activity in Mouse and Rat. Endocrinology, 2006, 147, 4655-4663.	1.4	64
97	Endogenous islet uncoupling protein-2 expression and loss of glucose homeostasis in ob/ob mice. Journal of Endocrinology, 2006, 190, 659-667.	1.2	42
98	The Zn2+-transporting Pathways in Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2006, 281, 9361-9372.	1.6	83
99	Essential Role of Pten in Body Size Determination and Pancreatic \hat{l}^2 -Cell Homeostasis In Vivo. Molecular and Cellular Biology, 2006, 26, 4511-4518.	1.1	92
100	The Neuronal Ca2+ Sensor Protein Visinin-like Protein-1 Is Expressed in Pancreatic Islets and Regulates Insulin Secretion. Journal of Biological Chemistry, 2006, 281, 21942-21953.	1.6	53
101	Expression of β1 Integrin Receptors during Rat Pancreas Development—Sites and Dynamics. Endocrinology, 2005, 146, 1798-1807.	1.4	56
102	Leptin Improves Insulin Resistance and Hyperglycemia in a Mouse Model of Type 2 Diabetes. Endocrinology, 2005, 146, 4024-4035.	1.4	94
103	Physiological Increases in Uncoupling Protein 3 Augment Fatty Acid Oxidation and Decrease Reactive Oxygen Species Production Without Uncoupling Respiration in Muscle Cells. Diabetes, 2005, 54, 2343-2350.	0.3	194
104	Glucose-regulated Glucagon Secretion Requires Insulin Receptor Expression in Pancreatic α-Cells. Journal of Biological Chemistry, 2005, 280, 33487-33496.	1.6	75
105	Disruption of Pancreatic \hat{l}^2 -Cell Lipid Rafts Modifies Kv2.1 Channel Gating and Insulin Exocytosis. Journal of Biological Chemistry, 2004, 279, 24685-24691.	1.6	159
106	Uncoupling Protein 2 and Islet Function. Diabetes, 2004, 53, S136-S142.	0.3	147
107	Muscle-Specific Overexpression of CD36 Reverses the Insulin Resistance and Diabetes of MKR Mice. Endocrinology, 2004, 145, 4667-4676.	1.4	53
108	The Characterization of Mitochondrial Permeability Transition in Clonal Pancreatic \hat{l}^2 -Cells. Journal of Biological Chemistry, 2004, 279, 41368-41376.	1.6	25

#	Article	IF	CITATIONS
109	Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nature Biotechnology, 2004, 22, 1115-1124.	9.4	527
110	Free Fatty Acid-induced \hat{l}^2 -Cell Defects Are Dependent on Uncoupling Protein 2 Expression. Journal of Biological Chemistry, 2004, 279, 51049-51056.	1.6	179
111	Gene and Protein Kinase Expression Profiling of Reactive Oxygen Species-Associated Lipotoxicity in the Pancreatic Â-Cell Line MIN6. Diabetes, 2004, 53, 129-140.	0.3	88
112	Temperature and redox state dependence of native Kv2.1 currents in rat pancreatic βâ€cells. Journal of Physiology, 2003, 546, 647-653.	1.3	38
113	Peroxisome Proliferator-Activated Receptor-Â Agonist Treatment in a Transgenic Model of Type 2 Diabetes Reverses the Lipotoxic State and Improves Glucose Homeostasis. Diabetes, 2003, 52, 1770-1778.	0.3	173
114	Antagonism of Rat \hat{l}^2 -Cell Voltage-dependent K+ Currents by Exendin 4 Requires Dual Activation of the cAMP/Protein Kinase A and Phosphatidylinositol 3-Kinase Signaling Pathways. Journal of Biological Chemistry, 2003, 278, 52446-52453.	1.6	98
115	The phosphatidylinositol 3â€kinase inhibitor LY294002 potently blocks Kv currents via a direct mechanism. FASEB Journal, 2003, 17, 720-722.	0.2	75
116	Mitochondrial Functional State in Clonal Pancreatic \hat{l}^2 -Cells Exposed to Free Fatty Acids. Journal of Biological Chemistry, 2003, 278, 19709-19715.	1.6	112
117	Epac-selective cAMP Analog 8-pCPT-2′-O-Me-cAMP as a Stimulus for Ca2+-induced Ca2+ Release and Exocytosis in Pancreatic β-Cells. Journal of Biological Chemistry, 2003, 278, 8279-8285.	1.6	272
118	Inhibition of Kv2.1 Voltage-dependent K+Channels in Pancreatic \hat{l}^2 -Cells Enhances Glucose-dependent Insulin Secretion. Journal of Biological Chemistry, 2002, 277, 44938-44945.	1.6	161
119	Glucagon-Like Peptide-1 Receptor Activation Antagonizes Voltage-Dependent Repolarizing K+ Currents in Â-Cells: A Possible Glucose-Dependent Insulinotropic Mechanism. Diabetes, 2002, 51, S443-S447.	0.3	88
120	Abnormal Expression of Pancreatic Islet Exocytotic SolubleN-Ethylmaleimide-Sensitive Factor Attachment Protein Receptors in Goto-Kakizaki Rats Is Partially Restored by Phlorizin Treatment and Accentuated by High Glucose Treatment. Endocrinology, 2002, 143, 4218-4226.	1.4	89
121	Synaptosome-Associated Protein of 25 Kilodaltons Modulates Kv2.1 Voltage-Dependent K+ Channels in Neuroendocrine Islet \hat{I}^2 -Cells through an Interaction with the Channel N Terminus. Molecular Endocrinology, 2002, 16, 2452-2461.	3.7	79
122	Exogenous Nitric Oxide and Endogenous Glucose-Stimulated Â-Cell Nitric Oxide Augment Insulin Release. Diabetes, 2002, 51, 3450-3460.	0.3	101
123	The Multiple Actions of GLP-1 on the Process of Glucose-Stimulated Insulin Secretion. Diabetes, 2002, 51, S434-S442.	0.3	452
124	Glucagon-Like Peptide-1 Inhibits Pancreatic ATP-Sensitive Potassium Channels via a Protein Kinase A- and ADP-Dependent Mechanism. Molecular Endocrinology, 2002, 16, 2135-2144.	3.7	145
125	Uncoupling Protein 2 Knockout Mice Have Enhanced Insulin Secretory Capacity After a High-Fat Diet. Diabetes, 2002, 51, 3211-3219.	0.3	189
126	Evolution of receptors for proglucagon-derived peptides: isolation of frog glucagon receptors. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2001, 128, 517-527.	0.7	21

#	Article	IF	CITATION
127	Uncoupling Protein-2 Negatively Regulates Insulin Secretion and Is a Major Link between Obesity, \hat{l}^2 Cell Dysfunction, and Type 2 Diabetes. Cell, 2001, 105, 745-755.	13.5	867
128	Ca ²⁺ influx and cAMP elevation overcame botulinum toxin A but not tetanus toxin inhibition of insulin exocytosis. American Journal of Physiology - Cell Physiology, 2001, 281, C740-C750.	2.1	22
129	Decreased CRH mRNA expression in the fetal guinea pig hypothalamus following maternal nutrient restriction. Brain Research, 2001, 896, 179-182.	1.1	15
130	Increased Uncoupling Protein-2 Levels in \hat{l}^2 -cells Are Associated With Impaired Glucose-Stimulated Insulin Secretion. Diabetes, 2001, 50, 1302-1310.	0.3	318
131	Members of the Kv1 and Kv2 Voltage-Dependent K+ Channel Families Regulate Insulin Secretion. Molecular Endocrinology, 2001, 15, 1423-1435.	3.7	176
132	Mutations to the Third Cytoplasmic Domain of the Glucagon-Like Peptide 1 (GLP-1) Receptor Can Functionally Uncouple GLP-1-Stimulated Insulin Secretion in HIT-T15 Cells. Molecular Endocrinology, 1999, 13, 1305-1317.	3.7	39
133	Characterization of the Carboxyl-terminal Domain of the Rat Glucose-dependent Insulinotropic Polypeptide (GIP) Receptor. Journal of Biological Chemistry, 1999, 274, 24593-24601.	1.6	31
134	Genetic Engineering of Glucose-Stimulated Insulin Secretion in Chinese Hamster Ovary Cells. Artificial Cells, Blood Substitutes, and Biotechnology, 1998, 26, 329-340.	0.9	4
135	Truncated SNAP-25 (1–197), Like Botulinum Neurotoxin A, Can Inhibit Insulin Secretion from HIT-T15 Insulinoma Cells. Molecular Endocrinology, 1998, 12, 1060-1070.	3.7	65
136	Scanning of the Glucagon-Like Peptide-1 Receptor Localizes G Protein-Activating Determinants Primarily to the N Terminus of the Third Intracellular Loop. Molecular Endocrinology, 1997, 11, 424-432.	3.7	65
137	Localization of the Domains Involved in Ligand Binding and Activation of the Glucose-Dependent Insulinotropic Polypeptide Receptor. Endocrinology, 1997, 138, 2640-2643.	1.4	45
138	GIP6–30amide contains the high affinity binding region of GIP and is a potent inhibitor of GIP1–42action in vitro. Regulatory Peptides, 1997, 69, 151-154.	1.9	54
139	Stable expression of the rat GLP-I receptor in CHO cells: Activation and binding characteristics utilizing GLP-I(7–36)-amide, oxyntomodulin, exendin-4, and exendin(9–39). Peptides, 1994, 15, 453-456.	1.2	77
140	Localization of the Domains Involved in Ligand Binding and Activation of the Glucose-Dependent Insulinotropic Polypeptide Receptor. , 0, .		23
141	Scanning of the Glucagon-Like Peptide-1 Receptor Localizes G Protein-Activating Determinants		32