Jean-Marie Mirebeau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5974500/publications.pdf

Version: 2024-02-01

759233 713466 27 490 12 21 citations h-index g-index papers 27 27 27 279 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Anisotropic Fast-Marching on Cartesian Grids Using Lattice Basis Reduction. SIAM Journal on Numerical Analysis, 2014, 52, 1573-1599.	2.3	76
2	Optimal Paths for Variants of the 2D and 3D Reeds–Shepp Car with Applications in Image Analysis. Journal of Mathematical Imaging and Vision, 2018, 60, 816-848.	1.3	42
3	Efficient fast marching with Finsler metrics. Numerische Mathematik, 2014, 126, 515-557.	1.9	41
4	Global Minimum for a Finsler Elastica Minimal Path Approach. International Journal of Computer Vision, 2017, 122, 458-483.	15.6	39
5	Sparse Non-negative Stencils for Anisotropic Diffusion. Journal of Mathematical Imaging and Vision, 2014, 49, 123-147.	1.3	37
6	Fast-Marching Methods for Curvature Penalized Shortest Paths. Journal of Mathematical Imaging and Vision, 2018, 60, 784-815.	1.3	34
7	Monotone and consistent discretization of the Monge-AmpÃ"re operator. Mathematics of Computation, 2016, 85, 2743-2775.	2.1	32
8	Optimal Meshes for Finite Elements of Arbitrary Order. Constructive Approximation, 2010, 32, 339-383.	3.0	22
9	Riemannian Fast-Marching on Cartesian Grids, Using Voronoi's First Reduction of Quadratic Forms. SIAM Journal on Numerical Analysis, 2019, 57, 2608-2655.	2.3	18
10	Minimal Geodesics Along Volume-Preserving Maps, Through Semidiscrete Optimal Transport. SIAM Journal on Numerical Analysis, 2016, 54, 3465-3492.	2.3	16
11	Sub-Riemannian Fast Marching in SE(2). Lecture Notes in Computer Science, 2015, , 366-374.	1.3	15
12	Finsler Geodesics Evolution Model for Region based Active Contours. , 2016, , .		14
13	Adaptive multiresolution analysis based on anisotropic triangulations. Mathematics of Computation, 2011, 81, 789-810.	2.1	13
14	Greedy bisection generates optimally adapted triangulations. Mathematics of Computation, 2011, 81, 811-837.	2.1	11
15	Vessel tree extraction using radius-lifted keypoints searching scheme and anisotropic fast marching method. Journal of Algorithms and Computational Technology, 2016, 10, 224-234.	0.7	11
16	Minimal Stencils for Discretizations of Anisotropic PDEs Preserving Causality or the Maximum Principle. SIAM Journal on Numerical Analysis, 2016, 54, 1582-1611.	2.3	11
17	A Generalized Asymmetric Dual-Front Model for Active Contours and Image Segmentation. IEEE Transactions on Image Processing, 2021, 30, 5056-5071.	9.8	11
18	A New Finsler Minimal Path Model with Curvature Penalization for Image Segmentation and Closed Contour Detection. , $2016, $, .		9

#	Article	IF	CITATIONS
19	Global Minimum for Curvature Penalized Minimal Path Method., 2015,,.		8
20	Automatic Differentiation of Non-holonomic Fast Marching for Computing Most Threatening Trajectories Under Sensors Surveillance. Lecture Notes in Computer Science, 2017, , 791-800.	1.3	7
21	Anisotropic Smoothness Classes: From Finite Element Approximation to Image Models. Journal of Mathematical Imaging and Vision, 2010, 38, 52-69.	1.3	6
22	Single Pass Computation of First Seismic Wave Travel Time in Three Dimensional Heterogeneous Media With General Anisotropy. Journal of Scientific Computing, 2021, 89, 1.	2.3	4
23	Monotone and Second Order Consistent Scheme for the Two Dimensional Pucci Equation. Lecture Notes in Computational Science and Engineering, 2021, , 733-742.	0.3	4
24	An Elastica Geodesic Approach with Convexity Shape Prior., 2021,,.		4
25	Netted Multi-Function Radars Positioning and Modes Selection by Non-Holonomic Fast Marching Computation of Highest Threatening Trajectories & Comp		3
26	A linear finite-difference scheme for approximating randers distances on cartesian grids. ESAIM - Control, Optimisation and Calculus of Variations, 2022, 28, 45.	1.3	2
27	Second order monotone finite differences discretization of linear anisotropic differential operators. Mathematics of Computation, 0, , .	2.1	0