## **Emmanuel Doelsch**

## List of Publications by Citations

Source: https://exaly.com/author-pdf/5974204/emmanuel-doelsch-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62
papers
1,634
citations
4.31
ext. papers
26
papers
1,847
ext. citations
26
papers
4.31
citations
avg, IF
L-index

| #  | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF   | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 62 | Effect of dissolved organic matter composition on metal speciation in soil solutions. <i>Chemical Geology</i> , <b>2015</b> , 398, 61-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.2  | 85        |
| 61 | Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 1. An Fe K-Edge EXAFS Study. <i>Langmuir</i> , <b>2000</b> , 16, 4726-4731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4    | 85        |
| 60 | Speciation and Crystal Chemistry of Fe(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 2. Characterization of Si <b>E</b> e Aggregates by FTIR and 29Si Solid-State NMR. <i>Langmuir</i> , <b>2001</b> , 17, 1399-1405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4    | 68        |
| 59 | Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations. <i>Environmental Pollution</i> , <b>2014</b> , 187, 22-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.3  | 65        |
| 58 | Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils. <i>Geoderma</i> , <b>2012</b> , 183-184, 100-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.7  | 65        |
| 57 | Synthesis of large quantities of single-walled aluminogermanate nanotube. <i>Journal of the American Chemical Society</i> , <b>2008</b> , 130, 5862-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.4 | 65        |
| 56 | Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , <b>2003</b> , 217, 121-128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.1  | 62        |
| 55 | Synthesis of imogolite fibers from decimolar concentration at low temperature and ambient pressure: a promising route for inexpensive nanotubes. <i>Journal of the American Chemical Society</i> , <b>2009</b> , 131, 17080-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.4 | 57        |
| 54 | Evidence of double-walled Al-Ge imogolite-like nanotubes. a cryo-TEM and SAXS investigation.<br>Journal of the American Chemical Society, <b>2010</b> , 132, 1208-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.4 | 54        |
| 53 | Formation and Growth Mechanisms of Imogolite-Like Aluminogermanate Nanotubes. <i>Chemistry of Materials</i> , <b>2010</b> , 22, 2466-2473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.6  | 53        |
| 52 | Fractionation of tropical soilborne heavy metals@omparison of two sequential extraction procedures. <i>Geoderma</i> , <b>2008</b> , 143, 168-179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.7  | 51        |
| 51 | Heavy metal content in soils of Rlinion (Indian Ocean). <i>Geoderma</i> , <b>2006</b> , 134, 119-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.7  | 50        |
| 50 | Investigation of copper speciation in pig slurry by a multitechnique approach. <i>Environmental Science &amp; Environmental &amp; Enviro</i> | 10.3 | 44        |
| 49 | High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. <i>Review of Scientific Instruments</i> , <b>2012</b> , 83, 063104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.7  | 44        |
| 48 | Increased zinc and copper availability in organic waste amended soil potentially involving distinct release mechanisms. <i>Environmental Pollution</i> , <b>2016</b> , 212, 299-306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.3  | 40        |
| 47 | New combination of EXAFS spectroscopy and density fractionation for the speciation of chromium within an andosol. <i>Environmental Science &amp; Environmental Science &amp; Environment</i>                                                                                                 | 10.3 | 38        |
| 46 | Impact of sewage sludge spreading on heavy metal speciation in tropical soils (RŪnion, Indian<br>Ocean). <i>Chemosphere</i> , <b>2006</b> , 65, 286-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4  | 38        |

## (2013-2013)

| 45 | Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical waterBoilBlant system. <i>Agriculture, Ecosystems and Environment</i> , <b>2013</b> , 164, 70-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.7  | 36 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 44 | Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. <i>Environmental Science &amp; Environmental Sc</i>         | 10.3 | 35 |
| 43 | Impact of pig slurry and green waste compost application on heavy metal exchangeable fractions in tropical soils. <i>Geoderma</i> , <b>2010</b> , 155, 390-400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7  | 31 |
| 42 | Spectroscopic characterization of organic matter of a soil and vinasse mixture during aerobic or anaerobic incubation. <i>Waste Management</i> , <b>2009</b> , 29, 1929-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.6  | 30 |
| 41 | Soil organo-mineral associations formed by co-precipitation of Fe, Si and Al in presence of organic ligands. <i>Geochimica Et Cosmochimica Acta</i> , <b>2019</b> , 260, 15-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.5  | 29 |
| 40 | Copper and zinc accumulation and fractionation in a clayey Hapludox soil subject to long-term pig slurry application. <i>Science of the Total Environment</i> , <b>2015</b> , 536, 831-839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.2 | 29 |
| 39 | Distribution and variability of silicon, copper and zinc in different bamboo species. <i>Plant and Soil</i> , <b>2012</b> , 351, 377-387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.2  | 29 |
| 38 | Synthesis of Ge-imogolite: influence of the hydrolysis ratio on the structure of the nanotubes. <i>Physical Chemistry Chemical Physics</i> , <b>2011</b> , 13, 14516-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.6  | 28 |
| 37 | Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. <i>Science of the Total Environment</i> , <b>2019</b> , 665, 502-512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.2 | 27 |
| 36 | Role of natural nanoparticles on the speciation of Ni in andosols of la Reunion. <i>Geochimica Et Cosmochimica Acta</i> , <b>2009</b> , 73, 4750-4760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.5  | 26 |
| 35 | Combining size fractionation, scanning electron microscopy, and X-ray absorption spectroscopy to probe zinc speciation in pig slurry. <i>Journal of Environmental Quality</i> , <b>2010</b> , 39, 531-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.4  | 24 |
| 34 | Sources of very high heavy metal content in soils of volcanic island (La RŪnion). <i>Journal of Geochemical Exploration</i> , <b>2006</b> , 88, 194-197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.8  | 24 |
| 33 | Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence. <i>Biogeosciences</i> , <b>2016</b> , 13, 1693-1703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.6  | 24 |
| 32 | Isolated cell walls exhibit cation binding properties distinct from those of plant roots. <i>Plant and Soil</i> , <b>2014</b> , 381, 367-379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.2  | 22 |
| 31 | Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops. <i>Waste Management</i> , <b>2013</b> , 33, 184-92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.6  | 22 |
| 30 | Anaerobic Digestion Alters Copper and Zinc Speciation. <i>Environmental Science &amp; Environmental Science </i> | 10.3 | 22 |
| 29 | Drastic Change in Zinc Speciation during Anaerobic Digestion and Composting: Instability of Nanosized Zinc Sulfide. <i>Environmental Science &amp; Environmental Science &amp; Environme</i>         | 10.3 | 19 |
| 28 | Effects of silicon and copper on bamboo grown hydroponically. <i>Environmental Science and Pollution Research</i> , <b>2013</b> , 20, 6482-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1  | 17 |

| 27 | Hydrolysis of Iron(II) Chloride under Anoxic Conditions and Influence of SiO4Ligands. <i>Langmuir</i> , <b>2002</b> , 18, 4292-4299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                 | 17 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 26 | Speciation and Crystal Chemistry of Iron(III) Chloride Hydrolyzed in the Presence of SiO4 Ligands. 3. Semilocal Scale Structure of the Aggregates. <i>Langmuir</i> , <b>2001</b> , 17, 4753-4757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                 | 17 |
| 25 | , and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. <i>Environmental Science &amp; Environmental Sc</i> | 41 <sup>0.3</sup> | 15 |
| 24 | Zinc fate in animal husbandry systems. <i>Metallomics</i> , <b>2014</b> , 6, 1999-2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5               | 15 |
| 23 | Returning Organic Residues to Agricultural Land (RORAL) [Fuelling the Follow-the-Technology approach. <i>Agricultural Systems</i> , <b>2014</b> , 124, 60-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1               | 13 |
| 22 | Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles. <i>Environmental Pollution</i> , <b>2017</b> , 222, 495-503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.3               | 12 |
| 21 | How Microbial Biofilms Control the Environmental Fate of Engineered Nanoparticles?. <i>Frontiers in Environmental Science</i> , <b>2020</b> , 8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.8               | 11 |
| 20 | Application of Synchrotron Radiation-based Methods for Environmental Biogeochemistry: Introduction to the Special Section. <i>Journal of Environmental Quality</i> , <b>2017</b> , 46, 1139-1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.4               | 11 |
| 19 | Repeated pig manure applications modify nitrate and chloride competition and fluxes in a Nitisol. <i>Science of the Total Environment</i> , <b>2015</b> , 511, 238-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.2              | 11 |
| 18 | The impact of fermentation on the distribution of cadmium in cacao beans. <i>Food Research International</i> , <b>2020</b> , 127, 108743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                 | 11 |
| 17 | Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. <i>Geochimica Et Cosmochimica Acta</i> , <b>2018</b> , 229, 53-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5               | 10 |
| 16 | Parameterizing the binding properties of dissolved organic matter with default values skews the prediction of copper solution speciation and ecotoxicity in soil. <i>Environmental Toxicology and Chemistry</i> , <b>2017</b> , 36, 898-905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.8               | 10 |
| 15 | Impact of high natural soilborne heavy metal concentrations on the mobility and phytoavailability of these elements for sugarcane. <i>Geoderma</i> , <b>2010</b> , 159, 452-458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.7               | 10 |
| 14 | Involvement of nitrogen functional groups in high-affinity copper binding in tomato and wheat root apoplasts: spectroscopic and thermodynamic evidence. <i>Metallomics</i> , <b>2016</b> , 8, 366-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5               | 8  |
| 13 | Zinc Speciation in Organic Waste Drives Its Fate in Amended Soils. <i>Environmental Science &amp; Environmental Science &amp; Technology</i> , <b>2020</b> , 54, 12034-12041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.3              | 6  |
| 12 | Ex-ante fate assessment of trace organic contaminants for decision making: a post-normal estimation for sludge recycling in Reunion. <i>Journal of Environmental Management</i> , <b>2015</b> , 147, 140-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9               | 5  |
| 11 | Phytoavailability of silver at predicted environmental concentrations: does the initial ionic or nanoparticulate form matter?. <i>Environmental Science: Nano</i> , <b>2019</b> , 6, 127-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1               | 4  |
| 10 | Diagnostic de contamination des agrosystfhes pfiurbains de Dakar par les Ifhents traces mfalliques. <i>Biotechnology, Agronomy and Society and Environment</i> , <b>2016</b> , 397-407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3               | 3  |

## LIST OF PUBLICATIONS

| 9 | Relative Weight of Organic Waste Origin on Compost and Digestate 16S rRNA Gene Bacterial Profilings and Related Functional Inferences. <i>Frontiers in Microbiology</i> , <b>2021</b> , 12, 667043                                 | 5.7              | 3 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|
| 8 | Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?. <i>Chemosphere</i> , <b>2017</b> , 170, 225-232                                                          | 8.4              | 1 |
| 7 | Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: <sup>13</sup> C labeling evidence                                                                                                          |                  | 1 |
| 6 | Redistribution of Zn towards light-density fractions and potentially mobile phases in a long-term manure-amended clayey soil. <i>Geoderma</i> , <b>2021</b> , 394, 115044                                                          | 6.7              | 1 |
| 5 | Contrasted fate of zinc sulfide nanoparticles in soil revealed by a combination of X-ray absorption spectroscopy, diffusive gradient in thin films and isotope tracing. <i>Environmental Pollution</i> , <b>2022</b> , 292, 118414 | 9.3              | О |
| 4 | X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. <i>Environmental Pollution</i> , <b>2021</b> , 279, 11                         | 68 <del>97</del> | Ο |
| 3 | INVESTIGATION OF TRACE ELEMENTS CONTENT IN ORGANIC WASTES USED FOR MARKET GARDENING. <i>Acta Horticulturae</i> , <b>2014</b> , 275-284                                                                                             | 0.3              |   |
| 2 | Fifth Annual SOLEIL UsersSMeeting. Synchrotron Radiation News, <b>2010</b> , 23, 18-20                                                                                                                                             | 0.6              |   |

Crystal Chemistry of Colloids Obtained by Hydrolysis of Fe(III) in the Presence of SiO4 Ligands.

Materials Research Society Symposia Proceedings, 2000, 658, 3361