Jong-Hoon Nam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5973793/publications.pdf Version: 2024-02-01

		567281	526287
30	1,101	15	27
papers	citations	h-index	g-index
32	32	32	820
all docs	docs citations	times ranked	citing authors

IONG-HOON NAM

#	Article	IF	CITATIONS
1	Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nature Neuroscience, 2009, 12, 553-558.	14.8	387
2	Calcium Balance and Mechanotransduction in Rat Cochlear Hair Cells. Journal of Neurophysiology, 2010, 104, 18-34.	1.8	93
3	The Actions of Calcium on Hair Bundle Mechanics in Mammalian Cochlear Hair Cells. Biophysical Journal, 2008, 94, 2639-2653.	0.5	90
4	Tonotopy in calcium homeostasis and vulnerability of cochlear hair cells. Hearing Research, 2019, 376, 11-21.	2.0	66
5	Force Transmission in the Organ of Corti Micromachine. Biophysical Journal, 2010, 98, 2813-2821.	0.5	48
6	Optimal Electrical Properties of Outer Hair Cells Ensure Cochlear Amplification. PLoS ONE, 2012, 7, e50572.	2.5	40
7	Computational models of hair cell bundle mechanics: III. 3-D utricular bundles. Hearing Research, 2004, 197, 112-130.	2.0	39
8	Underestimated Sensitivity of Mammalian Cochlear Hair Cells Due to Splay between Stereociliary Columns. Biophysical Journal, 2015, 108, 2633-2647.	0.5	39
9	Theoretical Conditions for High-Frequency Hair Bundle Oscillations in Auditory Hair Cells. Biophysical Journal, 2008, 95, 4948-4962.	0.5	38
10	Power Dissipation in the Subtectorial Space of the Mammalian Cochlea Is Modulated by Inner Hair Cell Stereocilia. Biophysical Journal, 2015, 108, 479-488.	0.5	33
11	Mechanical Properties and Consequences of Stereocilia and Extracellular Links in Vestibular Hair Bundles. Biophysical Journal, 2006, 90, 2786-2795.	0.5	30
12	Consequences of Location-Dependent Organ of Corti Micro-Mechanics. PLoS ONE, 2015, 10, e0133284.	2.5	29
13	Microstructures in the Organ of Corti Help Outer Hair Cells Form Traveling Waves along the Cochlear Coil. Biophysical Journal, 2014, 106, 2426-2433.	0.5	22
14	A Virtual Hair Cell, I: Addition of Gating Spring Theory into a 3-D Bundle Mechanical Model. Biophysical Journal, 2007, 92, 1918-1928.	0.5	21
15	Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes. Journal of the Acoustical Society of America, 2015, 137, 1117-1125.	1.1	20
16	The speed of the hair cell mechanotransducer channel revealed by fluctuation analysis. Journal of General Physiology, 2021, 153, .	1.9	15
17	A Virtual Hair Cell, II: Evaluation of Mechanoelectric Transduction Parameters. Biophysical Journal, 2007, 92, 1929-1937.	0.5	13
18	Two passive mechanical conditions modulate power generation by the outer hair cells. PLoS Computational Biology, 2017, 13, e1005701.	3.2	13

Jong-Hoon Nam

#	Article	IF	CITATIONS
19	Multiscale modeling of mechanotransduction in the utricle. Journal of Neurophysiology, 2019, 122, 132-150.	1.8	13
20	Probing hair cell's mechano-transduction using two-tone suppression measurements. Scientific Reports, 2019, 9, 4626.	3.3	13
21	Mechanically facilitated micro-fluid mixing in the organ of Corti. Scientific Reports, 2020, 10, 14847.	3.3	10
22	Power Dissipation in the Cochlea Can Enhance Frequency Selectivity. Biophysical Journal, 2019, 116, 1362-1375.	0.5	9
23	Interactions between Passive and Active Vibrations in the Organ of Corti InÂVitro. Biophysical Journal, 2020, 119, 314-325.	0.5	7
24	An operating principle of the turtle utricle to detect wide dynamic range. Hearing Research, 2018, 360, 31-39.	2.0	5
25	A Cochlear Partition Model Incorporating Realistic Electrical and Mechanical Parameters for Outer Hair Cells. , 2011, , .		3
26	A computational study on traveling waves in the gerbil cochlea generated by electrical impulse. AIP Conference Proceedings, 2015, , .	0.4	2
27	Hydrostatic measurement and finite element simulation of the compliance of the organ of Corti complex. Journal of the Acoustical Society of America, 2018, 143, 735-745.	1.1	2
28	Power dissipation in the organ of Corti enhances frequency selectivity. AIP Conference Proceedings, 2018, , .	0.4	1
29	Microchamber System to Experiment Mechanotransduction in the Organ of Corti. , 2012, , .		0

30 Probing Cochlear Resonators Using a New Microchamber. , 2013, , .

0