Christophe Ginestier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5973720/publications.pdf

Version: 2024-02-01

109 16,202 papers citations

44042 48 h-index 92 g-index

121 all docs 121 docs citations

121 times ranked 18695 citing authors

#	Article	IF	CITATIONS
1	ALDH1 Is a Marker of Normal and Malignant Human Mammary Stem Cells and a Predictor of Poor Clinical Outcome. Cell Stem Cell, 2007, 1, 555-567.	5.2	3,550
2	Breast Cancer Cell Lines Contain Functional Cancer Stem Cells with Metastatic Capacity and a Distinct Molecular Signature. Cancer Research, 2009, 69, 1302-1313.	0.4	1,067
3	Aldehyde Dehydrogenase 1 Is a Marker for Normal and Malignant Human Colonic Stem Cells (SC) and Tracks SC Overpopulation during Colon Tumorigenesis. Cancer Research, 2009, 69, 3382-3389.	0.4	938
4	Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts. Stem Cell Reports, 2014, 2, 78-91.	2.3	854
5	CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. Journal of Clinical Investigation, 2010, 120, 485-497.	3.9	658
6	Aldehyde Dehydrogenase 1–Positive Cancer Stem Cells Mediate Metastasis and Poor Clinical Outcome in Inflammatory Breast Cancer. Clinical Cancer Research, 2010, 16, 45-55.	3.2	646
7	Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks. Cancer Research, 2011, 71, 614-624.	0.4	573
8	Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene, 2006, 25, 2273-2284.	2.6	494
9	Regulation of Mammary Stem/Progenitor Cells by PTEN/Akt/ \hat{l}^2 -Catenin Signaling. PLoS Biology, 2009, 7, e1000121.	2.6	484
10	Aldehyde Dehydrogenase in Combination with CD133 Defines Angiogenic Ovarian Cancer Stem Cells That Portend Poor Patient Survival. Cancer Research, 2011, 71, 3991-4001.	0.4	458
11	Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 2010, 122, 777-785.	1.1	432
12	Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 2017, 9, 1025-1033.	6.6	423
13	BRCA1 regulates human mammary stem/progenitor cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1680-1685.	3.3	417
14	Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene, 2004, 23, 1377-1391.	2.6	293
15	Comprehensive Profiling of 8p11-12 Amplification in Breast Cancer. Molecular Cancer Research, 2005, 3, 655-667.	1.5	201
16	Cancer Stem Cell Vaccination Confers Significant Antitumor Immunity. Cancer Research, 2012, 72, 1853-1864.	0.4	200
17	Typical medullary breast carcinomas have a basal/myoepithelial phenotype. Journal of Pathology, 2005, 207, 260-268.	2.1	198
18	Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle, 2009, 8, 3297-3302.	1.3	193

#	Article	IF	CITATIONS
19	A Recurrent Chromosome Breakpoint in Breast Cancer at the NRG1/Neuregulin 1/Heregulin Gene. Cancer Research, 2004, 64, 6840-6844.	0.4	185
20	Immunophenotypic analysis of inflammatory breast cancers: identification of anâ€~inflammatory signature'. Journal of Pathology, 2004, 202, 265-273.	2.1	180
21	Junctional recruitment of mammalian Scribble relies on E-cadherin engagement. Oncogene, 2005, 24, 4330-4339.	2.6	180
22	Cancer Stem Cells in Breast: Current Opinion and Future Challenges. Pathobiology, 2008, 75, 75-84.	1.9	169
23	MicroRNA93 Regulates Proliferation and Differentiation of Normal and Malignant Breast Stem Cells. PLoS Genetics, 2012, 8, e1002751.	1.5	150
24	Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Research, 2005, 65, 767-79.	0.4	148
25	Distinct and Complementary Information Provided by Use of Tissue and DNA Microarrays in the Study of Breast Tumor Markers. American Journal of Pathology, 2002, 161, 1223-1233.	1.9	144
26	Nectin-4 is a new histological and serological tumor associated marker for breast cancer. BMC Cancer, 2007, 7, 73.	1.1	134
27	CD44 regulates epigenetic plasticity by mediating iron endocytosis. Nature Chemistry, 2020, 12, 929-938.	6.6	132
28	A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nature Medicine, 2017, 23, 568-578.	15.2	131
29	<i>ZNF703</i> gene amplification at 8p12 specifies luminal B breast cancer. EMBO Molecular Medicine, 2011, 3, 153-166.	3.3	126
30	The Histone Deacetylase Inhibitor Abexinostat Induces Cancer Stem Cells Differentiation in Breast Cancer with Low <i>Xist</i> Expression. Clinical Cancer Research, 2013, 19, 6520-6531.	3.2	122
31	Prognosis and Gene Expression Profiling of 20q13-Amplified Breast Cancers. Clinical Cancer Research, 2006, 12, 4533-4544.	3.2	121
32	Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer, 2006, 6, 245.	1.1	120
33	Mevalonate Metabolism Regulates Basal Breast Cancer Stem Cells and Is a Potential Therapeutic Target. Stem Cells, 2012, 30, 1327-1337.	1.4	120
34	Identification and validation of an ERBB2 gene expression signature in breast cancers. Oncogene, 2004, 23, 2564-2575.	2.6	117
35	miR-600 Acts as a Bimodal Switch that Regulates Breast Cancer Stem Cell Fate through WNT Signaling. Cell Reports, 2017, 18, 2256-2268.	2.9	111
36	Breast cancer stem cells: tools and models to rely on. BMC Cancer, 2009, 9, 202.	1.1	105

#	Article	IF	CITATIONS
37	ALDH1-Positive Cancer Stem Cells Predict Engraftment of Primary Breast Tumors and Are Governed by a Common Stem Cell Program. Cancer Research, 2013, 73, 7290-7300.	0.4	103
38	TACC1–chTOG–Aurora A protein complex in breast cancer. Oncogene, 2003, 22, 8102-8116.	2.6	99
39	Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein expression are associated with poor outcome in breast cancer. Oncogene, 2007, 26, 298-307.	2.6	81
40	Nectin-4: a new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Annals of Oncology, 2017, 28, 769-776.	0.6	77
41	Carcinogenesis and translational controls: TACC1 is down-regulated in human cancers and associates with mRNA regulators. Oncogene, 2002, 21, 5619-5630.	2.6	73
42	Moesin expression is a marker of basal breast carcinomas. International Journal of Cancer, 2007, 121, 1779-1785.	2.3	70
43	Mammary stem cell number as a determinate of breast cancer risk. Breast Cancer Research, 2007, 9, 109.	2.2	63
44	ERBB2 phosphorylation and trastuzumab sensitivity of breast cancer cell lines. Oncogene, 2007, 26, 7163-7169.	2.6	62
45	Comparative multi-methodological measurement of ERBB2 status in breast cancer. Journal of Pathology, 2004, 202, 286-298.	2.1	61
46	MicroRNA100 Inhibits Self-Renewal of Breast Cancer Stem–like Cells and Breast Tumor Development. Cancer Research, 2014, 74, 6648-6660.	0.4	59
47	A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1gene. Genes Chromosomes and Cancer, 2003, 37, 333-345.	1.5	56
48	Role of microRNA221 in regulating normal mammary epithelial hierarchy and breast cancer stem-like cells. Oncotarget, 2015, 6, 3709-3721.	0.8	49
49	Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib. PLoS ONE, 2014, 9, e104302.	1.1	43
50	Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Research, 2014, 16, R52.	2.2	43
51	An iron hand over cancer stem cells. Autophagy, 2017, 13, 1465-1466.	4.3	43
52	Growth Hormone Is Secreted by Normal Breast Epithelium upon Progesterone Stimulation and Increases Proliferation of Stem/Progenitor Cells. Stem Cell Reports, 2014, 2, 780-793.	2.3	42
53	Pregnane X-receptor promotes stem cell-mediated colon cancer relapse. Oncotarget, 2016, 7, 56558-56573.	0.8	34
54	Brief Reports: A Distinct DNA Methylation Signature Defines Breast Cancer Stem Cells and Predicts Cancer Outcome. Stem Cells, 2014, 32, 3031-3036.	1.4	33

#	Article	IF	Citations
55	Depleting MET-Expressing Tumor Cells by ADCC Provides a Therapeutic Advantage over Inhibiting HGF/MET Signaling. Cancer Research, 2015, 75, 3373-3383.	0.4	32
56	CD95/Fas and metastatic disease: What does not kill you makes you stronger. Seminars in Cancer Biology, 2020, 60, 121-131.	4.3	31
57	Reciprocal translocations in breast tumor cell lines: Cloning of a t(3;20) that targets the FHIT gene. Genes Chromosomes and Cancer, 2002, 35, 204-218.	1.5	30
58	ETV6 gene rearrangements in invasive breast carcinoma. Genes Chromosomes and Cancer, 2005, 44, 103-108.	1.5	30
59	A genomeâ€wide <scp>RNA</scp> i screen reveals essential therapeutic targets of breast cancer stem cells. EMBO Molecular Medicine, 2019, 11, e9930.	3.3	27
60	Getting to the Root of BRCA1-Deficient Breast Cancer. Cell Stem Cell, 2009, 5, 229-230.	5.2	23
61	PH-domain-binding inhibitors of nucleotide exchange factor BRAG2 disrupt Arf GTPase signaling. Nature Chemical Biology, 2019, 15, 358-366.	3.9	22
62	XIST loss impairs mammary stem cell differentiation and increases tumorigenicity through Mediator hyperactivation. Cell, 2022, 185, 2164-2183.e25.	13.5	22
63	p53 and cancer stem cells: The mevalonate connexion. Cell Cycle, 2012, 11, 2583-2584.	1.3	21
64	Loss of FHIT protein expression is a marker of adverse evolution in good prognosis localized breast cancer. International Journal of Cancer, 2003, 107, 854-862.	2.3	19
65	Basal and luminal breast cancers: Basic or luminous? (Review). International Journal of Oncology, 2004, 25, 249.	1.4	18
66	The SCRIB Paralog LANO/LRRC1 Regulates Breast Cancer Stem Cell Fate through WNT/β-Catenin Signaling. Stem Cell Reports, 2018, 11, 1040-1050.	2.3	18
67	How to best classify breast cancer: Conventional and novel classifications (Review). International Journal of Oncology, 2005, 27, 1307.	1.4	17
68	Development of parallel reaction monitoring (PRM)-based quantitative proteomics applied to HER2-Positive breast cancer. Oncotarget, 2018, 9, 33762-33777.	0.8	17
69	CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. IScience, 2021, 24, 103538.	1.9	16
70	Inflammatory breast cancers in Tunisia and France show similar immunophenotypes. Breast, 2007, 16, 352-358.	0.9	15
71	A stem cell population at the anorectal junction maintains homeostasis and participates in tissue regeneration. Nature Communications, 2021, 12, 2761.	5.8	15
72	HTS-Net: An integrated regulome-interactome approach for establishing network regulation models in high-throughput screenings. PLoS ONE, 2017, 12, e0185400.	1.1	13

#	Article	IF	CITATIONS
73	BMI1 nuclear location is critical for RAD51-dependent response to replication stress and drives chemoresistance in breast cancer stem cells. Cell Death and Disease, 2022, 13, 96.	2.7	13
74	Targeting breast cancer stem cells: fishing season open!. Breast Cancer Research, 2010, 12, 312.	2.2	11
75	Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study. Oncotarget, 2016, 7, 79428-79441.	0.8	11
76	miRViz: a novel webserver application to visualize and interpret microRNA datasets. Nucleic Acids Research, 2020, 48, W252-W261.	6.5	10
77	CD95/Fas protects triple negative breast cancer from anti-tumor activity of NK cells. IScience, 2021, 24, 103348.	1.9	10
78	How to best classify breast cancer: conventional and novel classifications (review). International Journal of Oncology, 2005, 27, 1307-13.	1.4	9
79	Loss of heterozygosity at microsatellite markers from region p11-21 of chromosome 8 in microdissected breast tumor but not in peritumoral cells. International Journal of Oncology, 2002, 21, 989.	1.4	7
80	Breast tumor microenvironment: In the eye of the cytokine storm. Cell Cycle, 2011, 10, 2421-2421.	1.3	7
81	Transcriptomic Analysis of Breast Cancer Stem Cells and Development of a pALDH1A1:mNeptune Reporter System for Live Tracking. Proteomics, 2019, 19, e1800454.	1.3	7
82	Breast cancer stem cells programs: enter the (non)-code. Briefings in Functional Genomics, 2016, 15, 186-199.	1.3	6
83	Stem Cells Inhibition by Bevacizumab in Combination with Neoadjuvant Chemotherapy for Breast Cancer. Journal of Clinical Medicine, 2019, 8, 612.	1.0	5
84	Cancer stem cells: Just sign here!. Cell Cycle, 2010, 9, 227-232.	1.3	3
85	What drives breast cancer heterogeneity: oncogenic events or cell of origin?. Journal of Pathology, 2012, 227, 267-269.	2.1	2
86	Computational Screening of Anti-Cancer Drugs Identifies a New BRCA Independent Gene Expression Signature to Predict Breast Cancer Sensitivity to Cisplatin. Cancers, 2022, 14, 2404.	1.7	2
87	S17 Breast cancer stem cells: Getting to treat the core. Breast, 2009, 18, S7-S8.	0.9	1
88	Correction: Breast Cancer Stem Cells Are Regulated by Mesenchymal Stem Cells through Cytokine Networks: Figure 4 Cancer Research, 2011, 71, 2407-2407.	0.4	1
89	Loss of <i>XIST</i> Impairs Human Mammary Stem Cell Differentiation and Increases Tumorigenicity Through Enhancer and Mediator Complex Hyperactivation. SSRN Electronic Journal, 0, , .	0.4	1
90	P1-04-07: Poly (ADP-Ribose) Polymerase-1 (PARP-1) Is Overexpressed in Human Breast Cancer Stem Cells: Results from a Proteomic-Based Approach, 2011, , .		1

#	Article	lF	Citations
91	Abstract 10: Characterization of ovarian CSC using ALDH and CD133 identifies a cancer stem cell hierarchy. , 2010, , .		1
92	Abstract 13: Regulation of breast cancer stem cells by miR-93. , 2010, , .		1
93	Abstract 3881: A distinct DNA methylation signature defines breast cancer stem cells and predict cancer outcome., 2014,,.		1
94	Flick the cancer stem cells' switch to turn cancer off. Molecular and Cellular Oncology, 2017, 4, e1319896.	0.3	0
95	Abstract 3322: Protective antitumor immunity induced by ALDEFLUOR+ enriched cancer stem cells. , 2010, , .		0
96	Abstract 749: Cancer stem cell vaccination confers significant anti-tumor immunity by selectively targeting cancer stem cells., 2011,,.		0
97	Abstract A57: Targeting breast cancer stem cells by inducing cell differentiation using histone deacetylase inhibitor S78454, 2011, , .		0
98	Abstract B11: A panel of patient-derived xenografts for preclinical efficacy studies in various breast cancer molecular subtypes, 2011,,.		0
99	Abstract 3327: Role of microRNA221 in breast cancer stem cell expansion and induction of EMT., 2012,,		0
100	Abstract LB-190: Growth hormone signaling in mammary stem and progenitor cells., 2012,,.		0
101	Abstract 3310: microRNAs regulate the transition between EMT and MET breast cancer stem cell states. , 2012 , , .		0
102	Abstract 5339: Breast cancer stem cells predict engraftmentin vivoof primary tumor and are characterized by a gene expression signature associated with poor prognosis , 2012, , .		0
103	Abstract B082: Role of CD44v6 in acquired resistance to anti-angiogenic therapy of triple-negative breast cancer., 2013,,.		0
104	Abstract C115: Response to trastuzumab of HER2-overexpressing breast cancer patient-derived xenografts depends on the host mouse strain , 2013, , .		0
105	Abstract 3020: Patient-derived xenograft (PDX) models to study the role of breast cancer stem cells in metastasis formation. , 2014 , , .		0
106	Abstract P4-13-23: Next-generation sequencing (NGS), array comparative genomic hybridization (aCGH) and patient-derived tumor xenograft (PDX) for precision medicine in advanced breast cancer: A single-center prospective study., 2016,,.		0
107	Abstract 4790: Breast cancer stem cells: The next step in the area of personalized medicine. , 2016, , .		0
108	Abstract P2-10-02: AVASTEM – Stem cells inhibition by bevacizumab in combination with neoadjuvant chemotherapy for locally advanced breast cancers: A prospective proof of concept randomized phase II trial. , 2019, , .		0

#	Article	IF	CITATIONS
109	Genome-wide RNA interference screen in cancer stem cells. Methods in Cell Biology, 2022, , .	0.5	0