Aleksandra Sander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5973673/publications.pdf

Version: 2024-02-01

28 papers 618 citations

623734 14 h-index 25 g-index

29 all docs 29 docs citations

times ranked

29

742 citing authors

#	Article	IF	CITATIONS
1	Scaling up extractive deacidification of waste cooking oil. Journal of Environmental Management, 2022, 316, 115222.	7.8	3
2	A novel approach for the removal of trace elements from waste fats and oils. Separation Science and Technology, 2020, 55, 3487-3501.	2.5	8
3	From Coffee to Biodiesel—Deep Eutectic Solvents for Feedstock and Biodiesel Purification. Separations, 2020, 7, 22.	2.4	19
4	Physicochemical Properties, Cytotoxicity, and Antioxidative Activity of Natural Deep Eutectic Solvents Containing Organic Acid. Chemical and Biochemical Engineering Quarterly, 2019, 33, 1-18.	0.9	63
5	Deep Eutectic Solvents for Purification of Waste Animal Fats and Crude Biodiesel. Kemija U Industriji, 2019, 68, 397-405.	0.3	2
6	Production of stable amorphous form by means of spray drying. Particulate Science and Technology, 2019, 37, 632-642.	2.1	5
7	Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. New Biotechnology, 2018, 47, 80-88.	4.4	27
8	The influence of animal fat type and purification conditions on biodiesel quality. Renewable Energy, 2018, 118, 752-760.	8.9	101
9	Transport phenomena in environmental engineering. ChemistrySelect, 2018, 3, .	1.5	O
10	Liquid–liquid equilibrium for the systems hydrocarbon–thiophene or pyridine–1-hexyl-3,5-dimethylpyridinium bis(trifluoromethylsulfonyl)imide. Separation Science and Technology, 2017, 52, 2557-2572.	2.5	8
11	Liquid–liquid equilibria in the ternary and multicomponent systems involving hydrocarbons, thiophene or pyridine and ionic liquid (1-benzyl-3-metylimidazolium bis(trifluorometylsulfonyl)imide). Fluid Phase Equilibria, 2016, 412, 39-50.	2.5	35
12	Separation of Hydrocarbons by Means of Liquid-Liquid Extraction with Deep Eutectic Solvents. Solvent Extraction and Ion Exchange, 2016, 34, 86-98.	2.0	25
13	Droplet Size Distribution Obtained byÂAtomization with Twoâ€Fluid Nozzles inÂaÂSpray Dryer. Chemical Engineering and Technology, 2014, 37, 2073-2084.	1.5	12
14	Application of 1-pentyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide for desulfurization, denitrification and dearomatization of FCC gasoline. Journal of Chemical Thermodynamics, 2014, 76, 1-15.	2.0	38
15	Spray Drying of Aqueous Solutions of Inorganic and Organic Materials. Particulate Science and Technology, 2013, 31, 458-465.	2.1	2
16	Extraction of S- and N-Compounds from the Mixture of Hydrocarbons by Ionic Liquids as Selective Solvents. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	50
17	Pentaerythritol crystallization – Influence of the process conditions on the granulometric properties of crystals. Advanced Powder Technology, 2012, 23, 191-198.	4.1	8
18	Crystallization of βâ€glycine by spray drying. Crystal Research and Technology, 2011, 46, 145-152.	1.3	18

#	Article	IF	Citations
19	Drying of solids; estimation of the mathematical model parameters. Canadian Journal of Chemical Engineering, 2010, 88, 822-829.	1.7	4
20	Drying of Pentaerythritol obtained from Batch Crystallization. Chemical Engineering and Technology, 2010, 33, 812-820.	1.5	3
21	Experimental Validation of Thinâ€layer Drying Models. Chemical Engineering and Technology, 2009, 32, 590-599.	1.5	14
22	Answers to the comments of Prof. Xiao Dong Chen on "Thin-layer drying of porous materials: selection of the appropriate mathematical model and relationships between thin-layer models parameters―by A. Sander [Chem. Eng. Process. 46 (2007) 1324–1331]. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1585-1586.	3.6	1
23	Thin-layer drying of porous materials: Selection of the appropriate mathematical model and relationships between thin-layer models parameters. Chemical Engineering and Processing: Process Intensification, 2007, 46, 1324-1331.	3.6	49
24	Heat and mass transfer models in convection drying of clay slabs. Ceramics International, 2003, 29, 641-653.	4.8	40
25	COMPARISON OF CONVECTIVE, VACUUM, AND MICROWAVE DRYING CHLORPROPAMIDE. Drying Technology, 2001, 19, 167-183.	3.1	50
26	THE INFLUENCE OF AIR TEMPERATURE ON EFFECTIVE DIFFUSION COEFFICIENT OF MOISTURE IN THE FALLING RATE PERIOD. Drying Technology, 1998, 16, 1487-1499.	3.1	14
27	THE INFLUENCE OF PRESSURE AND TEMPERATURE ON THE KINETICS OF VACUUM DRYING OF KETOPROFEN. Drying Technology, 1997, 15, 1617-1631.	3.1	14
28	Deep eutectic solvents for deacidification of waste biodiesel feedstocks: an experimental study. Biomass Conversion and Biorefinery, 0, , 1.	4.6	5