
Yang Mao-Draayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet, The, 2018, 391, 1263-1273.	13.7	684
2	Emerging Understanding of the Mechanism of Action for Dimethyl Fumarate in the Treatment of Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 5.	2.4	153
3	Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Autoimmunity Highlights, 2017, 8, 12.	3.9	137
4	Dimethyl Fumarate Selectively Reduces Memory T Cells and Shifts the Balance between Th1/Th17 and Th2 in Multiple Sclerosis Patients. Journal of Immunology, 2017, 198, 3069-3080.	0.8	136
5	Dimethyl Fumarate Protects Neural Stem/Progenitor Cells and Neurons from Oxidative Damage through Nrf2-ERK1/2 MAPK Pathway. International Journal of Molecular Sciences, 2015, 16, 13885-13907.	4.1	107
6	Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Scientific Reports, 2019, 9, 8837.	3.3	104
7	Dimethyl fumarate treatment of relapsing-remitting multiple sclerosis influences B-cell subsets. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e211.	6.0	73
8	Neuromyelitis optica spectrum disorders and pregnancy: therapeutic considerations. Nature Reviews Neurology, 2020, 16, 154-170.	10.1	65
9	The gut microbiome and microbial translocation in multiple sclerosis. Clinical Immunology, 2017, 183, 213-224.	3.2	64
10	The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases. Clinical Immunology, 2017, 175, 10-15.	3.2	52
11	Transcriptomics and proteomics reveal a cooperation between interferon and T-helper 17 cells in neuromyelitis optica. Nature Communications, 2020, 11, 2856.	12.8	50
12	Retinal Optical Coherence Tomography in Neuromyelitis Optica. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	47
13	Treatment of steroid-unresponsive tumefactive demyelinating disease with plasma exchange. Neurology, 2002, 59, 1074-1077.	1.1	45
14	Aging and lymphocyte changes by immunomodulatory therapies impact PML risk in multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 1014-1022.	3.0	45
15	Understanding Progressive Multifocal Leukoencephalopathy Risk in Multiple Sclerosis Patients Treated with Immunomodulatory Therapies: A Bird's Eye View. Frontiers in Immunology, 2018, 9, 138.	4.8	41
16	Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 7-15.	3.0	40
17	Characterization of humoral response to COVID mRNA vaccines in multiple sclerosis patients on disease modifying therapies. Vaccine, 2021, 39, 6111-6116.	3.8	39
18	Fas activation increases neural progenitor cell survival. Journal of Neuroscience Research, 2010, 88, 746-757.	2.9	35

YANG MAO-DRAAYER

#	Article	IF	CITATIONS
19	Siponimod enriches regulatory T and B lymphocytes in secondary progressive multiple sclerosis. JCI Insight, 2020, 5, .	5.0	35
20	Current and Future Biomarkers in Multiple Sclerosis. International Journal of Molecular Sciences, 2022, 23, 5877.	4.1	34
21	Alexia without agraphia in multiple sclerosis: case report with magnetic resonance imaging localization. Multiple Sclerosis Journal, 2004, 10, 705-707.	3.0	32
22	Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) and Vasoactive Intestinal Peptide (VIP) Regulate Murine Neural Progenitor Cell Survival, Proliferation, and Differentiation. Journal of Molecular Neuroscience, 2008, 36, 79-88.	2.3	29
23	The effect of interferon-β on mouse neural progenitor cell survival and differentiation. Biochemical and Biophysical Research Communications, 2009, 388, 181-186.	2.1	29
24	Dimethyl fumarate treatment shifts the immune environment toward an anti-inflammatory cell profile while maintaining protective humoral immunity. Multiple Sclerosis Journal, 2021, 27, 883-894.	3.0	27
25	Regulation of neural progenitor cell fate by anandamide. Biochemical and Biophysical Research Communications, 2010, 400, 21-26.	2.1	24
26	Emerging Approaches for Validating and Managing Multiple Sclerosis Relapse. Frontiers in Neurology, 2017, 8, 116.	2.4	21
27	Safety and Immune Effects of Blocking CD40 Ligand in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	19
28	Interferon β-1b directly modulates human neural stem/progenitor cell fate. Brain Research, 2011, 1413, 1-8.	2.2	18
29	CD6 is a target for cancer immunotherapy. JCI Insight, 2021, 6, .	5.0	18
30	Impact of trial design and patient heterogeneity on the identification of clinically effective therapies for progressive MS. Multiple Sclerosis Journal, 2018, 24, 1795-1807.	3.0	14
31	A multi-center case series of sarcoid optic neuropathy. Journal of the Neurological Sciences, 2021, 420, 117282.	0.6	13
32	Astrocytic outer retinal layer thinning is not a feature in AQP4-IgG seropositive neuromyelitis optica spectrum disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 188-195.	1.9	13
33	Cross-talk between CD4+ T-cells and neural stem/progenitor cells. Journal of the Neurological Sciences, 2011, 306, 121-128.	0.6	12
34	Neurosarcoidosis in a patient treated with tumor necrosis factor alpha inhibitors. Journal of Neurology, 2013, 260, 651-653.	3.6	11
35	Inhibition of bromodomain extraterminal histone readers alleviates skin fibrosis in experimental models of scleroderma. JCI Insight, 2022, 7, .	5.0	11
36	Cohort profile: a collaborative multicentre study of retinal optical coherence tomography in 539 patients with neuromyelitis optica spectrum disorders (CROCTINO). BMJ Open, 2020, 10, e035397.	1.9	10

YANG MAO-DRAAYER

#	Article	IF	CITATIONS
37	Impact of Cytokines on Neural Stem/Progenitor Cell Fate. Journal of Neurology & Neurophysiology, 0, s4, .	0.1	10
38	Meta-analysis of effectiveness of steroid-sparing attack prevention in MOG-IgG-associated disorder. Multiple Sclerosis and Related Disorders, 2021, 56, 103310.	2.0	9
39	Pathologic Findings of Chronic PML-IRIS in a Patient with Prolonged PML Survival Following Natalizumab Treatment. Journal of Investigative Medicine High Impact Case Reports, 2017, 5, 232470961773424.	0.6	8
40	Transplantation of Fas-deficient or wild-type neural stem/progenitor cells (NPCs) is equally efficient in treating experimental autoimmune encephalomyelitis (EAE). American Journal of Translational Research (discontinued), 2014, 6, 119-28.	0.0	8
41	Progressive multifocal leukoencephalopathy and granule cell neuronopathy with novel mutation flanking VP1 C-terminus in natalizumab-extended interval dosing. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e709.	6.0	7
42	A prospective observational cohort study of posterior tibial nerve stimulation in patients with multiple sclerosis: design and methods. BMC Urology, 2020, 20, 58.	1.4	6
43	Interferon beta (IFN-β) treatment exerts potential neuroprotective effects through neurotrophic factors and novel neurotensin/neurotensin high affinity receptor 1 pathway. Neural Regeneration Research, 2015, 10, 1932.	3.0	6
44	Elevated sCD40L in Secondary Progressive Multiple Sclerosis in Comparison to Non-progressive Benign and Relapsing Remitting Multiple Sclerosis. Journal of Central Nervous System Disease, 2021, 13, 117957352110507.	1.9	6
45	Assessment and Treatment Strategies for a Multiple Sclerosis Relapse. Journal of Immunology and Clinical Research, 2018, 5, .	0.5	5
46	IFN-β alters neurotrophic factor expression in T cells isolated from multiple sclerosis patients - implication of novel neurotensin/NTSR1 pathway in neuroprotection. American Journal of Translational Research (discontinued), 2014, 6, 312-9.	0.0	4
47	The FLUENT study design: investigating immune cell subset and neurofilament changes in patients with relapsing multiple sclerosis treated with fingolimod. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731881924.	1.0	3
48	Fas Receptor Modulates Lineage Commitment and Stemness of Mouse Neural Stem Cells. Neuroscience and Medicine, 2011, 02, 132-141.	0.2	3
49	Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochemistry International, 2017, 108, 410-416.	3.8	2
50	Two Teenagers With Headaches. Pediatric Case Reviews (Print), 2003, 3, 117-126.	0.1	1
51	Optical coherence tomography and T cell gene expression analysis in patients with benign multiple sclerosis. Neural Regeneration Research, 2017, 12, 1352.	3.0	1
52	Familial multiple sclerosis in patients with Von Hippel-Lindau disease. BMC Neurology, 2022, 22, 80.	1.8	1
53	S04. Multiple sclerosis and seizures: An observational study. Clinical Neurophysiology, 2018, 129, e143.	1.5	0

#	Article	IF	CITATIONS
55	20680 Characterization of Clinical and Immunological Laboratory Features in Multiple Sclerosis Patients with COVID-19. Journal of Clinical and Translational Science, 2021, 5, 144-144.	0.6	0

56 Fundamentals of the Neurologic Exam and Other Considerations in the Setting of Progressive Neurological Disease. , 2020, , 31-38.