Constanze Pinske

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597309/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus, 2016, 7, .	2.1	95
2	Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3). PLoS ONE, 2011, 6, e22830.	1.1	61
3	Physiology and Bioenergetics of [NiFe]-Hydrogenase 2-Catalyzed H ₂ -Consuming and H ₂ -Producing Reactions in Escherichia coli. Journal of Bacteriology, 2015, 197, 296-306.	1.0	60
4	Exploring the directionality of <i>Escherichia coli</i> formate hydrogenlyase: a membraneâ€bound enzyme capable of fixing carbon dioxide to organic acid. MicrobiologyOpen, 2016, 5, 721-737.	1.2	60
5	The respiratory molybdo-selenoprotein formate dehydrogenases of Escherichia coli have hydrogen: benzyl viologen oxidoreductase activity. BMC Microbiology, 2011, 11, 173.	1.3	55
6	Efficient electron transfer from hydrogen to benzyl viologen by the [NiFe]-hydrogenases of Escherichia coli is dependent on the coexpression of the iron–sulfur cluster-containing small subunit. Archives of Microbiology, 2011, 193, 893-903.	1.0	51
7	Characterization of Escherichia coli [NiFe]-Hydrogenase Distribution During Fermentative Growth at Different pHs. Cell Biochemistry and Biophysics, 2012, 62, 433-440.	0.9	46
8	Zymographic differentiation of [NiFe]-Hydrogenases 1, 2 and 3 of Escherichia coli K-12. BMC Microbiology, 2012, 12, 134.	1.3	40
9	Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. Journal of Bioenergetics and Biomembranes, 2011, 43, 645-650.	1.0	38
10	A-Type Carrier Protein ErpA Is Essential for Formation of an Active Formate-Nitrate Respiratory Pathway in Escherichia coli K-12. Journal of Bacteriology, 2012, 194, 346-353.	1.0	37
11	Delivery of Iron-Sulfur Clusters to the Hydrogen-Oxidizing [NiFe]-Hydrogenases in Escherichia coli Requires the A-Type Carrier Proteins ErpA and IscA. PLoS ONE, 2012, 7, e31755.	1.1	34
12	The importance of iron in the biosynthesis and assembly of [NiFe]-hydrogenases. Biomolecular Concepts, 2014, 5, 55-70.	1.0	21
13	Development of a cellâ€free system reveals an oxygenâ€labile step in the maturation of [NiFe]â€hydrogenase 2 of <i>Escherichia coli</i> . FEBS Letters, 2010, 584, 4109-4114.	1.3	19
14	Analysis of hydrogenase 1 levels reveals an intimate link between carbon and hydrogen metabolism in Escherichia coli K-12. Microbiology (United Kingdom), 2012, 158, 856-868.	0.7	18
15	SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells. Metallomics, 2015, 7, 683-690.	1.0	17
16	The role of the ferric-uptake regulator Fur and iron homeostasis in controlling levels of the [NiFe]-hydrogenases in Escherichia coli. International Journal of Hydrogen Energy, 2010, 35, 8938-8944.	3.8	14
17	Levels of control exerted by the Isc iron–sulfur cluster system on biosynthesis of the formate hydrogenlyase complex. Microbiology (United Kingdom), 2013, 159, 1179-1189.	0.7	14
18	The Ferredoxin-Like Proteins HydN and YsaA Enhance Redox Dye-Linked Activity of the Formate Dehydrogenase H Component of the Formate Hydrogenlyase Complex. Frontiers in Microbiology, 2018, 9, 1238.	1.5	12

CONSTANZE PINSKE

#	Article	IF	CITATIONS
19	Bioenergetic aspects of archaeal and bacterial hydrogen metabolism. Advances in Microbial Physiology, 2019, 74, 487-514.	1.0	12
20	Expanding the substrates for a bacterial hydrogenlyase reaction. Microbiology (United Kingdom), 2017, 163, 649-653.	0.7	12
21	A single amino acid exchange converts FocA into a unidirectional efflux channel for formate. Microbiology (United Kingdom), 2022, 168, .	0.7	12
22	Iron restriction induces preferential down-regulation of H2-consuming over H2-evolving reactions during fermentative growth of Escherichia coli. BMC Microbiology, 2011, 11, 196.	1.3	10
23	Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. Microbiology (United Kingdom), 2017, 163, 878-890.	0.7	9
24	Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli. Biotechnology Reports (Amsterdam, Netherlands), 2015, 8, 94-104.	2.1	8
25	The dual-function chaperone HycH improves assembly of the formate hydrogenlyase complex. Biochemical Journal, 2017, 474, 2937-2950.	1.7	8
26	Delimiting the Function of the C-Terminal Extension of the Escherichia coli [NiFe]-Hydrogenase 2 Large Subunit Precursor. Frontiers in Microbiology, 2019, 10, 2223.	1.5	8
27	Dissection of the Hydrogen Metabolism of the Enterobacterium Trabulsiella guamensis: Identification of a Formate-Dependent and Essential Formate Hydrogenlyase Complex Exhibiting Phylogenetic Similarity to Complex I. Journal of Bacteriology, 2019, 201, .	1.0	8
28	Chromogenic assessment of the three molybdo-selenoprotein formate dehydrogenases in Escherichia coli. Biochemistry and Biophysics Reports, 2015, 1, 62-67.	0.7	7
29	pH and a mixed carbon-substrate spectrum influence FocA- and FocB-dependent, formate-driven H2 production in Escherichia coli. FEMS Microbiology Letters, 2018, 365, .	0.7	7
30	Amino acid variants of the HybB membrane subunit ofEscherichia coli[NiFe]â€hydrogenaseâ€2 support a role in proton transfer. FEBS Letters, 2019, 593, 2194-2203.	1.3	7
31	Influence of <scp>C₄â€Dcu</scp> transporters on hydrogenase and formate dehydrogenase activities in stationary phaseâ€grown fermenting <scp><i>Escherichia coli</i></scp> . IUBMB Life, 2020, 72, 1680-1685.	1.5	7
32	Insights Into the Redox Sensitivity of Chloroflexi Hup-Hydrogenase Derived From Studies in Escherichia coli: Merits and Pitfalls of Heterologous [NiFe]-Hydrogenase Synthesis. Frontiers in Microbiology, 2018, 9, 2837.	1.5	4
33	The Extended C-Terminal α-Helix of the HypC Chaperone Restricts Recognition of Large Subunit Precursors by the Hyp-Scaffold Machinery during [NiFe]-Hydrogenase Maturation in Escherichia coli. Journal of Molecular Microbiology and Biotechnology, 2018, 28, 87-97.	1.0	3
34	Susceptibility of the Formate Hydrogenlyase Reaction to the Protonophore CCCP Depends on the Total Hydrogenase Composition. Inorganics, 2020, 8, 38.	1.2	3
35	The Nâ€ŧerminal domains of the paralogous HycE and NuoCDgovern assembly of the respective formate hydrogenlyase andNADHdehydrogenase complexes. FEBS Open Bio, 2020, 10, 371-385.	1.0	2