
Patrick J Pagano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature, 1994, 368, 850-853.	27.8	1,601
2	Vascular gp91 ^{<i>phox</i>} . Circulation Research, 2000, 87, 1-3.	4.5	827
3	Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. American Journal of Physiology - Cell Physiology, 2001, 280, C53-C60.	4.6	571
4	Expression of a Functionally Active gp91phox-Containing Neutrophil-Type NAD(P)H Oxidase in Smooth Muscle Cells From Human Resistance Arteries. Circulation Research, 2002, 90, 1205-1213.	4.5	558
5	Novel Role of gp91 ^{phox} -Containing NAD(P)H Oxidase in Vascular Endothelial Growth Factor–Induced Signaling and Angiogenesis. Circulation Research, 2002, 91, 1160-1167.	4.5	449
6	Superoxide Anion From the Adventitia of the Rat Thoracic Aorta Inactivates Nitric Oxide. Circulation Research, 1998, 82, 810-818.	4.5	349
7	Reactive Oxygen Species Mediate Amplitude-Dependent Hypertrophic and Apoptotic Responses to Mechanical Stretch in Cardiac Myocytes. Circulation Research, 2001, 89, 453-460.	4.5	310
8	Endothelin-1 Increases Vascular Superoxide via Endothelin _A –NADPH Oxidase Pathway in Low-Renin Hypertension. Circulation, 2003, 107, 1053-1058.	1.6	309
9	Platelet-derived HMGB1 is a critical mediator of thrombosis. Journal of Clinical Investigation, 2015, 125, 4638-4654.	8.2	281
10	Inhibition of Copper-Zinc Superoxide Dismutase Induces Cell Growth, Hypertrophic Phenotype, and Apoptosis in Neonatal Rat Cardiac Myocytes In Vitro. Circulation Research, 1999, 85, 147-153.	4.5	257
11	Oxidases and peroxidases in cardiovascular and lung disease: New concepts in reactive oxygen species signaling. Free Radical Biology and Medicine, 2011, 51, 1271-1288.	2.9	218
12	Angiotensin II Induces p67 ^{phox} mRNA Expression and NADPH Oxidase Superoxide Generation in Rabbit Aortic Adventitial Fibroblasts. Hypertension, 1998, 32, 331-337.	2.7	212
13	Hydrogen Peroxide as a Paracrine Vascular Mediator: Regulation and Signaling Leading to Dysfunction. Experimental Biology and Medicine, 2006, 231, 237-251.	2.4	196
14	NAD(P)H Oxidase Mediates Angiotensin II–Induced Vascular Macrophage Infiltration and Medial Hypertrophy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 776-782.	2.4	177
15	Glycated Proteins Stimulate Reactive Oxygen Species Production in Cardiac Myocytes. Circulation, 2006, 113, 1235-1243.	1.6	173
16	The Reactive Adventitia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1962-1971.	2.4	161
17	Upregulation of p67 ^{<i>phox</i>} and gp91 ^{<i>phox</i>} in aortas from angiotensin II-infused mice. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2234-H2240.	3.2	158
18	Reactive Oxygen Species Mediate Alpha-adrenergic Receptor-stimulated Hypertrophy in Adult Rat Ventricular Myocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 131-139.	1.9	157

#	Article	IF	CITATIONS
19	Vascular Effects Following Homozygous Disruption of p47 ^{phox} . Circulation, 2000, 101, 1234-1236.	1.6	152
20	Role of Inflammation in the Development of Renal Damage and Dysfunction in Angiotensin II–Induced Hypertension. Hypertension, 2008, 52, 256-263.	2.7	140
21	Novel NAD(P)H Oxidase Inhibitor Suppresses Angioplasty-Induced Superoxide and Neointimal Hyperplasia of Rat Carotid Artery. Circulation Research, 2003, 92, 637-643.	4.5	138
22	Thrombospondin-1 supports blood pressure by limiting eNOS activation and endothelial-dependent vasorelaxation. Cardiovascular Research, 2010, 88, 471-481.	3.8	131
23	NADPH oxidases: key modulators in aging and age-related cardiovascular diseases?. Clinical Science, 2016, 130, 317-335.	4.3	123
24	NOX and inflammation in the vascular adventitia. Free Radical Biology and Medicine, 2009, 47, 1254-1266.	2.9	117
25	Nox2 B-loop peptide, Nox2ds, specifically inhibits the NADPH oxidase Nox2. Free Radical Biology and Medicine, 2011, 51, 1116-1125.	2.9	115
26	Paracrine Role of Adventitial Superoxide Anion in Mediating Spontaneous Tone of the Isolated Rat Aorta in Angiotensin II-Induced Hypertension. Hypertension, 1999, 33, 1225-1232.	2.7	113
27	Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: Bellwether for vascular disease?. Cardiovascular Research, 2007, 75, 679-689.	3.8	109
28	Thrombospondin-1 Regulates Blood Flow via CD47 Receptor–Mediated Activation of NADPH Oxidase 1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2966-2973.	2.4	106
29	Perivascular Superoxide Anion Contributes to Impairment of Endothelium-Dependent Relaxation. Circulation, 2002, 106, 2497-2502.	1.6	105
30	Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biology, 2018, 17, 259-273.	9.0	103
31	Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase–generated superoxide. Journal of Clinical Investigation, 2008, 118, 3980-3989.	8.2	103
32	Reduced NAD(P)H Oxidase in Low Renin Hypertension. Hypertension, 2006, 47, 81-86.	2.7	94
33	Identification and characterization of VPO1, a new animal heme-containing peroxidase. Free Radical Biology and Medicine, 2008, 45, 1682-1694.	2.9	93
34	NOâ€mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. Journal of Physiology, 2006, 576, 557-567.	2.9	90
35	NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS. Cellular and Molecular Life Sciences, 2012, 69, 2315-2325.	5.4	89
36	Gene Transfer of NAD(P)H Oxidase Inhibitor to the Vascular Adventitia Attenuates Medial Smooth Muscle Hypertrophy. Circulation Research, 2004, 95, 587-594.	4.5	82

#	Article	IF	CITATIONS
37	MEF2B-Nox1 Signaling Is Critical for Stretch-Induced Phenotypic Modulation of Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 430-438.	2.4	78
38	Nox4 Oxidase Overexpression Specifically Decreases Endogenous Nox4 mRNA and Inhibits Angiotensin II–Induced Adventitial Myofibroblast Migration. Hypertension, 2008, 52, 143-149.	2.7	77
39	Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H946-H953.	3.2	74
40	Targeting reactive oxygen species in hypertension. Current Opinion in Nephrology and Hypertension, 2006, 15, 179-186.	2.0	74
41	Thrombospondin-1 and CD47 regulation of cardiac, pulmonary and vascular responses in health and disease. Matrix Biology, 2014, 37, 92-101.	3.6	72
42	The Quest for Selective Nox Inhibitors and Therapeutics: Challenges, Triumphs and Pitfalls. Antioxidants and Redox Signaling, 2014, 20, 2741-2754.	5.4	72
43	Thrombospondin-1 Activation of Signal-Regulatory Protein-α Stimulates Reactive Oxygen Species Production and Promotes Renal Ischemia Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 1171-1186.	6.1	69
44	Selective Recapitulation of Conserved and Nonconserved Regions of Putative NOXA1 Protein Activation Domain Confers Isoform-specific Inhibition of Nox1 Oxidase and Attenuation of Endothelial Cell Migration. Journal of Biological Chemistry, 2013, 288, 36437-36450.	3.4	68
45	Aquaporin 1, Nox1, and Ask1 mediate oxidant-induced smooth muscle cell hypertrophy. Cardiovascular Research, 2013, 97, 134-142.	3.8	65
46	The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Science Signaling, 2017, 10, .	3.6	65
47	Lack of Glutathione Peroxidase 1 Accelerates Cardiac-Specific Hypertrophy and Dysfunction in Angiotensin II Hypertension. Hypertension, 2010, 55, 116-123.	2.7	63
48	Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Angiotensin II–Induced Inflammation and Hypertension. Hypertension, 2011, 57, 245-254.	2.7	60
49	Microvascular NADPH oxidase in health and disease. Free Radical Biology and Medicine, 2017, 109, 33-47.	2.9	58
50	Sphingosine kinase functionally links elevated transmural pressure and increased reactive oxygen species formation in resistance arteries. FASEB Journal, 2006, 20, 702-704.	0.5	55
51	Enhanced myogenic response in the afferent arteriole of spontaneously hypertensive rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1769-H1775.	3.2	55
52	HO-1 and CO Decrease Platelet-Derived Growth Factor-Induced Vascular Smooth Muscle Cell Migration Via Inhibition of Nox1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 98-104.	2.4	53
53	The Role of NADPH Oxidases in the Etiology of Obesity and Metabolic Syndrome: Contribution of Individual Isoforms and Cell Biology. Antioxidants and Redox Signaling, 2019, 31, 687-709.	5.4	52
54	Nox-derived ROS are acutely activated in pressure overload pulmonary hypertension: indications for a seminal role for mitochondrial Nox4. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H197-H205.	3.2	48

#	Article	IF	CITATIONS
55	MEF2C-MYOCD and Leiomodin1 Suppression by miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary Arterial Hypertension. PLoS ONE, 2016, 11, e0153780.	2.5	47
56	Nox and Inflammation in the Vascular Adventitia. Hypertension, 2016, 67, 14-19.	2.7	46
57	Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Current Pharmaceutical Design, 2015, 21, 6032-6035.	1.9	44
58	Role of superoxide in apoptosis induced by growth factor withdrawal. American Journal of Physiology - Renal Physiology, 1998, 275, F691-F702.	2.7	43
59	Endothelial Nox1 oxidase assembly in human pulmonary arterial hypertension; driver of Gremlin1-mediated proliferation. Clinical Science, 2017, 131, 2019-2035.	4.3	43
60	Adventitial delivery of dominant-negative p67phoxattenuates neointimal hyperplasia of the rat carotid artery. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H1933-H1941.	3.2	42
61	Vascular TSP1-CD47 signaling promotes sickle cell-associated arterial vasculopathy and pulmonary hypertension in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 316, L1150-L1164.	2.9	39
62	GLUT4 Facilitative Glucose Transporter Specifically and Differentially Contributes to Agonist-Induced Vascular Reactivity in Mouse Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1596-1602.	2.4	38
63	CD47 and Nox1 Mediate Dynamic Fluid-Phase Macropinocytosis of Native LDL. Antioxidants and Redox Signaling, 2017, 26, 886-901.	5.4	38
64	Rac-Dependent Monocyte Chemoattractant Protein-1 Production Is Induced by Nutrient Deprivation. Circulation Research, 2002, 91, 798-805.	4.5	37
65	NADPH oxidase 2 inhibitors CPP11G and CPP11H attenuate endothelial cell inflammation & vessel dysfunction and restore mouse hind-limb flow. Redox Biology, 2019, 22, 101143.	9.0	37
66	Upregulated Expression of Rat Heart Intercellular Adhesion Molecule-1 in Angiotensin II– but Not Phenylephrine- Induced Hypertension. Hypertension, 2001, 37, 58-65.	2.7	36
67	Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biology, 2019, 22, 101138.	9.0	35
68	CD47 Promotes Age-Associated Deterioration in Angiogenesis, Blood Flow and Glucose Homeostasis. Cells, 2020, 9, 1695.	4.1	34
69	Bridged tetrahydroisoquinolines as selective NADPH oxidase 2 (Nox2) inhibitors. MedChemComm, 2013, 4, 1085.	3.4	33
70	The adventitia: The outs and ins of vascular disease. Cardiovascular Research, 2007, 75, 636-639.	3.8	29
71	Binding of EBP50 to Nox organizing subunit p47phox is pivotal to cellular reactive species generation and altered vascular phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5308-E5317.	7.1	29
72	Adventitia-Derived Hydrogen Peroxide Impairs Relaxation of the Rat Carotid Artery <i>via</i> Smooth Muscle Cell p38 Mitogen-Activated Protein Kinase. Antioxidants and Redox Signaling, 2011, 15, 1507-1515.	5.4	28

#	Article	IF	CITATIONS
73	Lack of Inducible NO Synthase Reduces Oxidative Stress and Enhances Cardiac Response to Isoproterenol in Mice With Deoxycorticosterone Acetate–Salt Hypertension. Hypertension, 2005, 46, 1355-1361.	2.7	27
74	Deletion of Inducible Nitric Oxide Synthase Provides Cardioprotection in Mice With 2-Kidney, 1-Clip Hypertension. Hypertension, 2009, 53, 49-56.	2.7	25
75	Hepatocyte-Specific Ablation or Whole-Body Inhibition of Xanthine Oxidoreductase in Mice Corrects Obesity-Induced Systemic Hyperuricemia Without Improving Metabolic Abnormalities. Diabetes, 2019, 68, 1221-1229.	0.6	25
76	Resistance of endothelium-dependent relaxation to elevation of O 2 â^ levels in rabbit carotid artery. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2109-H2114.	3.2	23
77	Endothelial-Derived miR-17â^1⁄492 Promotes Angiogenesis to Protect against Renal Ischemia-Reperfusion Injury. Journal of the American Society of Nephrology: JASN, 2021, 32, 553-562.	6.1	20
78	Strategies Aimed at Nox4 Oxidase Inhibition Employing Peptides from Nox4 B-Loop and C-Terminus and p22 ^{<i>phox</i>} N-Terminus: An Elusive Target. International Journal of Hypertension, 2013, 2013, 1-9.	1.3	19
79	Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells. Cellular Signalling, 2014, 26, 1818-1824.	3.6	19
80	Distinct hydrogen peroxide-induced constriction in multiple mouse arteries: potential influence of vascular polarization. Pharmacological Reports, 2008, 60, 61-7.	3.3	19
81	A novel combinatorial technique for simultaneous quantification of oxygen radicals and aggregation reveals unexpected redox patterns in the activation of platelets by different physiopathological stimuli. Haematologica, 2019, 104, 1879-1891.	3.5	18
82	Forestalling age-impaired angiogenesis and blood flow by targeting NOX: Interplay of NOX1, IL-6, and SASP in propagating cell senescence. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
83	NADPH oxidase 2 activity in Parkinson's disease. Neurobiology of Disease, 2022, 170, 105754.	4.4	18
84	Proteomic Analysis Identifies an NADPH Oxidase 1 (Nox1)-Mediated Role for Actin-Related Protein 2/3 Complex Subunit 2 (ARPC2) in Promoting Smooth Muscle Cell Migration. International Journal of Molecular Sciences, 2013, 14, 20220-20235.	4.1	15
85	Notch2 suppression mimicking changes in human pulmonary hypertension modulates Notch1 and promotes endothelial cell proliferation. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H542-H557.	3.2	15
86	Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines. Redox Biology, 2015, 6, 9-18.	9.0	14
87	Immunochemical studies on the contribution of NADPH cytochrome P-450 reductase to the cytochrome P-450-dependent metabolism of arachidonic acid. Archives of Biochemistry and Biophysics, 1987, 252, 635-645.	3.0	13
88	Differential responses of pituitary kallikrein and prolactin to tamoxifen and chlorotrianisene. Molecular and Cellular Endocrinology, 1989, 66, 93-100.	3.2	13
89	Cooperation between CYB5R3 and NOX4 via coenzyme Q mitigates endothelial inflammation. Redox Biology, 2021, 47, 102166.	9.0	13
90	Comparison of H2O2-induced vasoconstriction in the abdominal aorta and mesenteric artery of the mouse. Vascular Pharmacology, 2007, 47, 288-294.	2.1	12

#	Article	IF	CITATIONS
91	Cloning and sequencing of rabbit leukocyte NADPH oxidase genes reveals a unique p67(phox) homolog. Journal of Leukocyte Biology, 2002, 71, 319-28.	3.3	9
92	Rational Design and Delivery of NOX-Inhibitory Peptides. Methods in Molecular Biology, 2019, 1982, 417-428.	0.9	4
93	Endosomal CIC-3 and Nox1. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 240-242.	2.4	3
94	The Enigmatic Vascular NOX: From Artifact to Double Agent of Change. Hypertension, 2021, 77, 275-283.	2.7	3
95	TrACEing Angiotensin II Type 1 to Right Ventricular Hypertrophy. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 705-707.	5.6	2
96	Chemiluminescence and the Nox1-Nox2-Nox4 Triple Knockout. Antioxidants and Redox Signaling, 2015, 23, 1246-1247.	5.4	1
97	Response to Inflammation, Angiotensin II, and Hypertension. Hypertension, 2008, 52, .	2.7	0
98	Does the Mediterranean G6PD S188F Polymorphism Confer Vascular Protection?. Hypertension, 2020, 76, 314-315.	2.7	0
99	Thrombospondinâ€1 (TSP1) Impairs Vasorelaxation via Signal Regulatory Protein (SIRP)â€Î±â€Mediated Activation of NADPH Oxidase 1 (NOX1), FASEB Iournal, 2013, 27, 1090,5,	0.5	0