David E Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Severity of Severe Acute Respiratory System Coronavirus 2 (SARS-CoV-2) Alpha Variant (B.1.1.7) in England. Clinical Infectious Diseases, 2022, 75, e1120-e1127.	2.9	71
2	OpenSAFELY NHS Service Restoration Observatory 1: primary care clinical activity in England during the first wave of COVID-19. British Journal of General Practice, 2022, 72, e63-e74.	0.7	22
3	Trends and clinical characteristics of COVID-19 vaccine recipients: a federated analysis of 57.9 million patients' primary care records <i>in situ</i> using OpenSAFELY. British Journal of General Practice, 2022, 72, e51-e62.	0.7	75
4	Mortality among Care Home Residents in England during the first and second waves of the COVID-19 pandemic: an observational study of 4.3 million adults over the age of 65. Lancet Regional Health - Europe, The, 2022, 14, 100295.	3.0	38
5	Overall and cause-specific hospitalisation and death after COVID-19 hospitalisation in England: A cohort study using linked primary care, secondary care, and death registration data in the OpenSAFELY platform. PLoS Medicine, 2022, 19, e1003871.	3.9	39
6	The INDEPTH (Impact of Nuclear Domains on Gene Expression and Plant Traits) Academy: a community resource for plant science. Journal of Experimental Botany, 2022, , .	2.4	3
7	Potentially inappropriate prescribing of DOACs to people with mechanical heart valves: A federated analysis of 57.9 million patients' primary care records in situ using OpenSAFELY. Thrombosis Research, 2022, 211, 150-153.	0.8	6
8	Association between oral anticoagulants and COVID-19-related outcomes: a population-based cohort study. British Journal of General Practice, 2022, 72, e456-e463.	0.7	3
9	Comparison of methods for predicting COVID-19-related death in the general population using the OpenSAFELY platform. Diagnostic and Prognostic Research, 2022, 6, 6.	0.8	2
10	Deep learning – promises for 3D nuclear imaging: a guide for biologists. Journal of Cell Science, 2022, 135, .	1.2	5
11	Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform. Lancet Rheumatology, The, 2021, 3, e19-e27.	2.2	49
12	Use of non-steroidal anti-inflammatory drugs and risk of death from COVID-19: an OpenSAFELY cohort analysis based on two cohorts. Annals of the Rheumatic Diseases, 2021, 80, 943-951.	0.5	66
13	HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV,the, 2021, 8, e24-e32.	2.1	340
14	Editorial for the SEB 2020 special issue â€~dynamic organisation of the nucleus across kingdoms'. Nucleus, 2021, 12, 42-43.	0.6	0
15	Association between living with children and outcomes from covid-19: OpenSAFELY cohort study of 12 million adults in England. BMJ, The, 2021, 372, n628.	3.0	56
16	Hydroxychloroquine treatment does not reduce COVID-19 mortality; underdosing to the wrong patients? – Authors' reply. Lancet Rheumatology, The, 2021, 3, e172-e173.	2.2	1
17	Case fatality risk of the SARS-CoV-2 variant of concern B.1.1.7 in England, 16 November to 5 February. Eurosurveillance, 2021, 26, .	3.9	156
18	Identifying Care Home Residents in Electronic Health Records - An OpenSAFELY Short Data Report. Wellcome Open Research, 2021, 6, 90.	0.9	18

#	Article	IF	CITATIONS
19	Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform. Lancet, The, 2021, 397, 1711-1724.	6.3	332
20	Clinical coding of long COVID in English primary care: a federated analysis of 58 million patient records <i>in situ</i> using OpenSAFELY. British Journal of General Practice, 2021, 71, e806-e814.	0.7	74
21	Factors associated with deaths due to COVID-19 versus other causes: population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet Regional Health - Europe, The, 2021, 6, 100109.	3.0	121
22	Association between warfarin and COVID-19-related outcomes compared with direct oral anticoagulants: population-based cohort study. Journal of Hematology and Oncology, 2021, 14, 172.	6.9	8
23	OpenSAFELY: impact of national guidance on switching anticoagulant therapy during COVID-19 pandemic. Open Heart, 2021, 8, e001784.	0.9	17
24	Factors associated with COVID-19-related death using OpenSAFELY. Nature, 2020, 584, 430-436.	13.7	4,674
25	Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform. Lancet Respiratory Medicine,the, 2020, 8, 1106-1120.	5.2	211
26	Advancing knowledge of the plant nuclear periphery and its application for crop science. Nucleus, 2020, 11, 347-363.	0.6	10
27	Growing the nuclear envelope proteome. Nature Plants, 2020, 6, 740-741.	4.7	2
28	Aluminium–silicon interactions in higher plants: an update. Journal of Experimental Botany, 2020, 71, 6719-6729.	2.4	54
29	Editorial for the SEB Florence special issue: functional organisation of the nuclear periphery. Nucleus, 2019, 10, 167-168.	0.6	1
30	The nuclear envelope in higher plant mitosis and meiosis. Nucleus, 2019, 10, 55-66.	0.6	20
31	A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants. Journal of Cell Science, 2019, 132, .	1.2	8
32	Computational Methods for Studying the Plant Nucleus. Methods in Molecular Biology, 2018, 1840, 205-219.	0.4	0
33	The LINC complex contributes to heterochromatin organisation and transcriptional gene silencing in plants. Journal of Cell Science, 2017, 130, 590-601.	1.2	65
34	Editorial for the SEB Brighton Special Issue: Dynamic organization of the nucleus. Nucleus, 2017, 8, 1-1.	0.6	13
35	Cell Biology of the Plant Nucleus. Annual Review of Plant Biology, 2017, 68, 139-172.	8.6	87
36	Exploring the evolution of the proteins of the plant nuclear envelope. Nucleus, 2017, 8, 46-59.	0.6	46

#	Article	IF	CITATIONS
37	A novel family of plant nuclear envelope-associated proteins. Journal of Experimental Botany, 2016, 67, 5699-5710.	2.4	44
38	Dynamics of the Plant Nuclear Envelope During Cell Division. Methods in Molecular Biology, 2016, 1370, 115-126.	0.4	0
39	Marker gene tethering by nucleoporins affects gene expression in plants. Nucleus, 2015, 6, 471-478.	0.6	29
40	Absence of <scp>SUN</scp> 1 and <scp>SUN</scp> 2 proteins in <i>ArabidopsisÂthaliana</i> leads to a delay in meiotic progression and defects in synapsis and recombination. Plant Journal, 2015, 81, 329-346.	2.8	77
41	Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex. Frontiers in Plant Science, 2014, 5, 183.	1.7	16
42	The plant LINC complex at the nuclear envelope. Chromosome Research, 2014, 22, 241-252.	1.0	29
43	Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. Journal of Experimental Botany, 2014, 65, 6499-6512.	2.4	66
44	Novel plant SUN–KASH bridges are involved in RanGAP anchoring and nuclear shape determination. Journal of Cell Biology, 2012, 196, 203-211.	2.3	147
45	Nuclear envelope dynamics during plant cell division suggest common mechanisms between kingdoms. Biochemical Journal, 2011, 435, 661-667.	1.7	38
46	Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst.). Environmental and Experimental Botany, 2011, 70, 266-276.	2.0	73
47	The plant nuclear envelope in focus. Biochemical Society Transactions, 2010, 38, 307-311.	1.6	19
48	Characterization of SUN-domain proteins at the higher plant nuclear envelope. Plant Journal, 2010, 61, 134-144.	2.8	153
49	Organelle Biogenesis and Positioning in Plants. Biochemical Society Transactions, 2010, 38, 729-732.	1.6	0
50	Nuclear envelope proteins and their role in nuclear positioning and replication. Biochemical Society Transactions, 2010, 38, 741-746.	1.6	9
51	Plant SUN domain proteins. Plant Signaling and Behavior, 2010, 5, 154-156.	1.2	18
52	The Plant Nuclear Envelope. Plant Cell Monographs, 2009, , 9-28.	0.4	13
53	The Plant Nuclear Envelope. Plant Cell Monographs, 2008, , 9.	0.4	0
54	Retention and mobility of the mammalian lamin B receptor in the plant nuclear envelope. Biology of the Cell, 2007, 99, 553-562.	0.7	34

#	Article	IF	CITATIONS
55	The plant nuclear envelope: new prospects for a poorly understood structure. New Phytologist, 2004, 163, 227-246.	3.5	30
56	Aerenchyma formation. New Phytologist, 2004, 161, 35-49.	3.5	486
57	ER quality control can lead to retrograde transport from the ER lumen to the cytosol and the nucleoplasm in plants. Plant Journal, 2003, 34, 269-281.	2.8	118
58	The use of root growth and modelling data to investigate amelioration of aluminium toxicity by silicon in Picea abies seedlings. Journal of Inorganic Biochemistry, 2003, 97, 52-58.	1.5	28
59	The first 238 amino acids of the human lamin B receptor are targeted to the nuclear envelope in plants. Journal of Experimental Botany, 2003, 54, 943-950.	2.4	84
60	Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize(Zea mays L.). Planta, 2001, 212, 205-214.	1.6	297
61	PP7, a gene encoding a novel protein Ser/Thr phosphatase, is expressed primarily in a subset of guard cells in Arabidopsis thaliana. Physiologia Plantarum, 1999, 106, 219-223.	2.6	11
62	P-type calcium ATPases in higher plants – biochemical, molecular and functional properties. BBA - Biomembranes, 1998, 1376, 1-25.	7.9	67
63	The amelioration of aluminium toxicity by silicon in wheat (Triticum aestivum L.): malate exudation as evidence for an in planta mechanism. Planta, 1998, 204, 318-323.	1.6	84
64	Establishment of low extracellular pH is essential for uptake of the fluorescent anionic dye hydroxypyrenetrisulfonate by suspension-cultured carrot cells. Plant Physiology and Biochemistry, 1998, 36, 879-887.	2.8	1
65	The amelioration of aluminium toxicity by silicon in higher plants: Solution chemistry or an in planta mechanism?. Physiologia Plantarum, 1998, 104, 608-614.	2.6	164
66	A calcium pump at the higher plant nuclear envelope?. FEBS Letters, 1998, 429, 44-48.	1.3	45
67	Expression and characterization of PP7, a novel plant protein Ser/Thr phosphatase distantly related to RdgC/PPEF and PP5. FEBS Letters, 1998, 440, 147-152.	1.3	29
68	INTERACTION BETWEEN SILICON AND ALUMINUM IN TRITICUM AESTIVUM L. (CV. CELTIC). Israel Journal of Plant Sciences, 1997, 45, 285-292.	0.3	23
69	VISUALIZATION OF GOLGI APPARATUS IN METHACRYLATE EMBEDDED CONIFER EMBRYO TISSUE USING THE MONOCLONAL ANTIBODY JIM 84,. Cell Biology International, 1997, 21, 295-302.	1.4	9
70	Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings. Plant and Soil, 1995, 173, 89-95.	1.8	117
71	Aluminium/silicon interactions in higher plants. Journal of Experimental Botany, 1995, 46, 161-171.	2.4	196
72	Calmodulin-stimulated ATPase of maize cells: functional reconstitution, monoclonal antibodies and subcellular localization. Journal of Experimental Botany, 1994, 45, 1553-1564.	2.4	6

#	Article	IF	CITATIONS
73	Calmodulin-stimulated calcium pumping ATPases located at higher plant intracellular membranes: a significant divergence from other eukaryotes?. Physiologia Plantarum, 1994, 90, 420-426.	2.6	31
74	Calmodulin-stimulated calcium pumping ATPases located at higher plant intracellular membranes: a significant divergence from other eukaryotes?. Physiologia Plantarum, 1994, 90, 420-426.	2.6	17
75	Reconstitution and Characterization of a Calmodulin-Stimulated Ca ²⁺ -Pumping ATPase Purified from <i>Brassica oleracea</i> L. Plant Physiology, 1992, 100, 1670-1681.	2.3	48
76	Studies on the Higher Plant Calmodulin-Stimulated ATPase. , 1992, , 39-53.		7
77	Active Calcium Transport by Plant Cell Membranes. Journal of Experimental Botany, 1991, 42, 285-303.	2.4	190
78	Internalisation of fluorescein isothiocyanate and fluorescein isothiocyanate-dextran by suspension-cultured plant cells. Journal of Cell Science, 1990, 96, 721-730.	1.2	47
79	The calmodulin-stimulated ATPase of maize coleoptiles forms a phosphorylated intermediate. Biochemical and Biophysical Research Communications, 1989, 159, 185-191.	1.0	22
80	The calmodulin-stimulated ATPase of maize coleoptiles is a 140000-Mr polypeptide. Planta, 1988, 176, 283-285.	1.6	41
81	Calcium transport by pea root membranes. Planta, 1987, 172, 265-272.	1.6	13
82	Calcium transport by pea root membranes. Planta, 1987, 172, 273-279.	1.6	21
83	Rapid isolation of plasma membrane and endoplasmic reticulum vesicles from pea roots. Biochemical Society Transactions, 1986, 14, 107-108.	1.6	1