
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972561/publications.pdf Version: 2024-02-01

Hyolulunc

#	Article	IF	CITATIONS
1	Ultrasensitive detection and risk assessment of di(2-ethylhexyl) phthalate migrated from daily-use plastic products using a nanostructured electrochemical aptasensor. Sensors and Actuators B: Chemical, 2022, 357, 131381.	7.8	12
2	Electrochemical biosensor for nucleic acid amplification-free and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA via CRISPR/Cas13a trans-cleavage reaction. Biosensors and Bioelectronics, 2022, 201, 113960.	10.1	46
3	A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles. Analyst, The, 2022, 147, 1117-1127.	3.5	8
4	Simple ultrasensitive electrochemical detection of the DBP plasticizer for the risk assessment of South Korean river waters. Analyst, The, 2022, 147, 3525-3533.	3.5	9
5	A cost-effective and sensitive photothermal biosensor for the diagnosis of diabetes based on quantifying the sialic acid content on erythrocytes. Sensors and Actuators B: Chemical, 2021, 329, 129259.	7.8	5
6	Microfluidic recapitulation of circulating tumor cell–neutrophil clusters <i>via</i> double spiral channel-induced deterministic encapsulation. Lab on A Chip, 2021, 21, 3483-3497.	6.0	12
7	Fully Automated System for Rapid Enrichment and Precise Detection of Enterobacteria Using Magneto-Electrochemical Impedance Measurements. Biochip Journal, 2021, 15, 233-242.	4.9	5
8	Circulating miR-122-5p and miR-375 as Potential Biomarkers for Bone Mass Recovery after Parathyroidectomy in Patients with Primary Hyperparathyroidism: A Proof-of-Concept Study. Diagnostics, 2021, 11, 1704.	2.6	3
9	Microfluidic chip for rapid and selective isolation of tumor-derived extracellular vesicles for early diagnosis and metastatic risk evaluation of breast cancer. Biosensors and Bioelectronics, 2021, 192, 113495.	10.1	22
10	Multiâ€miRNA panel of tumorâ€derived extracellular vesicles as promising diagnostic biomarkers of earlyâ€stage breast cancer. Cancer Science, 2021, 112, 5078-5087.	3.9	29
11	All-in-one platform for salivary cotinine detection integrated with a microfluidic channel and an electrochemical biosensor. Lab on A Chip, 2020, 20, 320-331.	6.0	28
12	Smart forensic kit: Real-time estimation of postmortem interval using a highly sensitive gas sensor for microbial forensics. Sensors and Actuators B: Chemical, 2020, 322, 128612.	7.8	0
13	Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27906-27915.	7.1	84
14	Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes. Biosensors and Bioelectronics, 2020, 169, 112622.	10.1	66
15	Salivary biomarkers in oral squamous cell carcinoma. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 2020, 46, 301-312.	0.8	13
16	Automatically Controlled Microfluidic System for Continuous Separation of Rare Bacteria from Blood. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 1135-1144.	1.5	17
17	High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sensors and Actuators B: Chemical, 2019, 294, 62-68.	7.8	21
18	On-chip isolation and enrichment of circulating cell-free DNA using microfluidic device. Biomicrofluidics, 2019, 13, 024113.	2.4	15

#	Article	IF	CITATIONS
19	Smart Fatigue Phone: Real-time estimation of driver fatigue using smartphone-based cortisol detection. Biosensors and Bioelectronics, 2019, 136, 106-111.	10.1	22
20	Highly sensitive and accurate estimation of bloodstain age using smartphone. Biosensors and Bioelectronics, 2019, 130, 414-419.	10.1	22
21	Mobile diagnostics: next-generation technologies for <i>in vitro</i> diagnostics. Analyst, The, 2018, 143, 1515-1525.	3.5	17
22	A microfluidic electrochemical aptasensor for enrichment and detection of bisphenol A Biosensors and Bioelectronics, 2018, 117, 457-463.	10.1	36
23	Salivary Exosome and Cell-Free DNA for Cancer Detection. Micromachines, 2018, 9, 340.	2.9	38
24	Progress in Circulating Tumor Cell Research Using Microfluidic Devices. Micromachines, 2018, 9, 353.	2.9	32
25	Highly sensitive paper-based immunoassay using photothermal laser speckle imaging. Biosensors and Bioelectronics, 2018, 117, 385-391.	10.1	29
26	Nonmonotonic Effects of Chronic Low-Dose Di(2-ethylhexyl) Phthalate on Gonadal Weight and Reproductive. Development & Reproduction, 2018, 22, 85-94.	0.4	15
27	Chronic Low-Dose Nonylphenol or Di-(2-ethylhexyl) Phthalate has a Different Estrogen-like Response in Mouse Uterus. Development & Reproduction, 2018, 22, 379-391.	0.4	20
28	An integrated microfluidic chip for one-step isolation of circulating tumor cells. Sensors and Actuators B: Chemical, 2017, 238, 1144-1150.	7.8	74
29	Relationship analysis of speech communication between salivary cortisol levels and personal characteristics using the Smartphone Linked Stress Measurement (SLSM). Biochip Journal, 2017, 11, 101-107.	4.9	3
30	A photothermal biosensor for detection of C-reactive protein in human saliva. Sensors and Actuators B: Chemical, 2017, 246, 471-476.	7.8	38
31	Continuous adsorption and photothermal lysis of airborne bacteria using a gold-nanoparticle-embedded-geometrically activated surface interaction (gold-GASI) chip Sensors and Actuators B: Chemical, 2017, 248, 580-588.	7.8	13
32	Smart Forensic Phone: Colorimetric analysis of a bloodstain for age estimation using a smartphone. Sensors and Actuators B: Chemical, 2017, 243, 221-225.	7.8	72
33	Smartphone Diagnostics Unit (SDU) for the assessment of human stress and inflammation level assisted by biomarker ink, fountain pen, and origami holder for strip biosensor. Sensors and Actuators B: Chemical, 2017, 241, 80-84.	7.8	23
34	Disturbing Effects of Chronic Low-dose 4-Nonylphenol exposing on Gonadal Weight and Reproductive Outcome over One-generation. Development & Reproduction, 2017, 21, 121-130.	0.4	15
35	Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS ONE, 2016, 11, e0160557.	2.5	26
36	Graphene-Iodine Nanocomposites: Highly Potent Bacterial Inhibitors that are Bio-compatible with Human Cells. Scientific Reports, 2016, 6, 20015.	3.3	38

#	Article	IF	CITATIONS
37	High-throughput detection of human salivary cortisol using a multiple optical probe based scanning system with micro-optics and nanograting coupled label-free microarray. Sensors and Actuators B: Chemical, 2016, 233, 520-527.	7.8	2
38	Isolation and enrichment of circulating biomarkers for cancer screening, detection, and diagnostics. Analyst, The, 2016, 141, 382-392.	3.5	74
39	Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget, 2016, 7, 24677-24687.	1.8	202
40	Economical and rapid manufacturing of lateral flow immunosensor using fountain pens and gold colloidal solution. Analytical Methods, 2015, 7, 1834-1842.	2.7	14
41	Signal amplification in a microfluidic paper-based analytical device (µ-PAD) by confinement of the fluidic flow. Biochip Journal, 2015, 9, 116-123.	4.9	10
42	Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip. Journal of Chromatography A, 2015, 1377, 100-105.	3.7	24
43	Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosensors and Bioelectronics, 2015, 67, 86-92.	10.1	83
44	Label-free detection of protein-protein interactions on multi-scale micro-well arrays using spatial light modulator. Applied Physics Letters, 2014, 105, .	3.3	2
45	Real-time measurement of human salivary cortisol for the assessment of psychological stress using a smartphone. Sensing and Bio-Sensing Research, 2014, 2, 8-11.	4.2	74
46	Enrichment of circulating tumor cells using a centrifugal affinity plate system. Journal of Chromatography A, 2014, 1373, 25-30.	3.7	6
47	A high-Q resonator using biocompatible materials at microwave frequencies. Applied Physics Letters, 2014, 104, .	3.3	25
48	Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab on A Chip, 2014, 14, 45-56.	6.0	109
49	Diagnosis of diabetes mellitus using sialic acid expression of erythrocyte and a microfluidic resistive temperature detector (micro-RTD). Sensors and Actuators B: Chemical, 2014, 191, 305-312.	7.8	14
50	Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes. Biosensors and Bioelectronics, 2014, 57, 59-64.	10.1	14
51	Kojyl cinnamate ester derivatives promote adiponectin production during adipogenesis in human adipose tissue-derived mesenchymal stem cells. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2141-2145.	2.2	13
52	Biochip technology for monitoring posttraumatic stress disorder (PTSD). Biochip Journal, 2013, 7, 195-200.	4.9	16
53	A highly sensitive and label free biosensing platform for wireless sensor node system. Biosensors and Bioelectronics, 2013, 50, 362-367.	10.1	19
54	Microfluidic sorting of fluorescently activated cells depending on gene expression level. Electrophoresis, 2013, 34, 3103-3110.	2.4	4

HYO-IL JUNG

#	Article	IF	CITATIONS
55	The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3273-3276.	2.2	11
56	Microfluidic devices for the isolation of circulating rare cells: A focus on affinityâ€based, dielectrophoresis, and hydrophoresis. Electrophoresis, 2013, 34, 1028-1041.	2.4	57
57	Continuous labeling of circulating tumor cells with microbeads using a vortex micromixer for highly selective isolation. Biosensors and Bioelectronics, 2013, 40, 63-67.	10.1	40
58	Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Biosensors and Bioelectronics, 2013, 40, 206-212.	10.1	113
59	Negative Enrichment of Circulating Tumor Cells Using a Geometrically Activated Surface Interaction Chip. Analytical Chemistry, 2013, 85, 4439-4445.	6.5	89
60	Bi nanowire-based thermal biosensor for the detection of salivary cortisol using the Thomson effect. Applied Physics Letters, 2013, 103, 143114.	3.3	6
61	Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation. Biomicrofluidics, 2013, 7, 14105.	2.4	63
62	Asymmetric split-ring resonator-based biosensor for detection of label-free stress biomarkers. Applied Physics Letters, 2013, 103, .	3.3	56
63	Review of Recent Progress in Micro-Systems for the Detection and Analysis of Airborne Microorganisms. Analytical Letters, 2012, 45, 113-129.	1.8	21
64	A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sensors and Actuators B: Chemical, 2012, 169, 26-31.	7.8	192
65	Emotion-on-a-chip (EOC): Evolution of biochip technology to measure human emotion using body fluids. Medical Hypotheses, 2012, 79, 827-832.	1.5	16
66	Quantitative analysis of sialic acid on erythrocyte membranes using a photothermal biosensor. Biosensors and Bioelectronics, 2012, 35, 484-488.	10.1	23
67	A symmetric metamaterial element-based RF biosensor for rapid and label-free detection. Applied Physics Letters, 2011, 99, .	3.3	46
68	Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab on A Chip, 2011, 11, 1118.	6.0	389
69	Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab on A Chip, 2011, 11, 93-99.	6.0	53
70	Microfluidic device to separate micro-beads with various fluorescence intensities. Sensors and Actuators B: Chemical, 2011, 160, 1536-1543.	7.8	14
71	Optimization of microscale vortex generators in a microchannel using advanced response surface method. International Journal of Heat and Mass Transfer, 2011, 54, 118-125.	4.8	48
72	ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode. Sensors and Actuators B: Chemical, 2010, 148, 577-582.	7.8	113

#	Article	IF	CITATIONS
73	A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluidics and Nanofluidics, 2010, 9, 533-540.	2.2	77
74	Real-time detection of food-borne bacterial adenosine triphosphate (ATP) using dielectrophoretic force and a bioluminescence sensor. Mikrochimica Acta, 2010, 170, 283-288.	5.0	14
75	A microfluidic magnetic bead impact generator for physical stimulation of osteoblast cell. Electrophoresis, 2010, 31, 2762-2770.	2.4	15
76	An integrated photo-thermal sensing system for rapid and direct diagnosis of anemia. Biosensors and Bioelectronics, 2010, 26, 1679-1683.	10.1	12
77	Direct measurement of the in vitro hemoglobin content of erythrocytes using the photo-thermal effect of the heme group. Analyst, The, 2010, 135, 2365.	3.5	21
78	Circulating Tumor Cells: Detection Methods and Potential Clinical Application in Breast Cancer. Journal of Breast Cancer, 2010, 13, 125.	1.9	20
79	Micro cell analysis device using cellular photothermal effect and thermal sensor. , 2009, , .		0
80	Dielectrophoretic Separation of Airborne Microbes and Dust Particles Using a Microfluidic Channel for Real-Time Bioaerosol Monitoring. Environmental Science & Technology, 2009, 43, 5857-5863.	10.0	53
81	Physical stimulation of mammalian cells using micro-bead impact within a microfluidic environment to enhance growth rate. Microfluidics and Nanofluidics, 2009, 6, 131-138.	2.2	5
82	Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluidics and Nanofluidics, 2009, 7, 829-839.	2.2	22
83	Novel application of Joule heating to maintain biocompatible temperatures in a fully integrated electromagnetic cell sorting system. Sensors and Actuators A: Physical, 2009, 151, 64-70.	4.1	17
84	An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensors and Actuators B: Chemical, 2009, 138, 270-277.	7.8	49
85	Analysis and utilization of Joule heating in an electromagnet integrated microfluidic device for biological applications. Current Applied Physics, 2009, 9, e287-e290.	2.4	5
86	Effects of PDMS curing ratio and 3D micro-pyramid structure on the formation of an in vitro neural network. Current Applied Physics, 2009, 9, e294-e297.	2.4	7
87	Highly sensitive spinâ€valve devices for chipâ€cytometers. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1636-1640.	1.8	4
88	Solid-medium-integrated impedimetric biosensor for real-time monitoring of microorganisms. Sensors and Actuators B: Chemical, 2009, 137, 357-362.	7.8	22
89	Electromagnetic microfluidic cell labeling device using on-chip microelectromagnet and multi-layered channels. Sensors and Actuators B: Chemical, 2009, 141, 210-216.	7.8	30
90	Multiorifice Flow Fractionation: Continuous Size-Based Separation of Microspheres Using a Series of Contraction/Expansion Microchannels. Analytical Chemistry, 2009, 81, 8280-8288.	6.5	127

#	Article	IF	CITATIONS
91	Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab on A Chip, 2009, 9, 939-948.	6.0	200
92	\$P\$-type Si-nanowire-based Field-effect Transistors for Electric Detection of a Biomarker: Matrix Metalloproteinase-9. Journal of the Korean Physical Society, 2009, 55, 232-235.	0.7	11
93	Single-cell assay on CD-like lab chip using centrifugal massive single-cell trap. Sensors and Actuators A: Physical, 2008, 143, 64-69.	4.1	29
94	A simple and direct biomolecule detection scheme based on a microwave resonator. Sensors and Actuators B: Chemical, 2008, 130, 823-828.	7.8	12
95	Dual thermopile integrated microfluidic calorimeter for biochemical thermodynamics. Microfluidics and Nanofluidics, 2008, 5, 255-262.	2.2	18
96	A microfluidic ATP-bioluminescence sensor for the detection of airborne microbes. Sensors and Actuators B: Chemical, 2008, 132, 443-448.	7.8	54
97	Single cell assay on cd-like lab chip using centrifugal single cell trap. , 2007, , .		1
98	Manipulation of Phospholiposome in Microfluidic Channel Using Lorentz Force. , 2007, , .		1
99	Microfluidic ATP-Bioluminesecence Sensor for Detection of Airborne Microbe. , 2007, , .		1
100	Dual Micro-Thermopile Based Biocalorimeter for Enzyme-Substrate Reaction. , 2007, , .		1
101	Separation of apoptotic cells using a microfluidic device. Biotechnology Letters, 2007, 29, 1659-1663.	2.2	16
102	Mechanical detection of liposomes using piezoresistive cantilever. Sensors and Actuators B: Chemical, 2006, 117, 415-419.	7.8	35
103	Application of spectral SPR imaging for the surface analysis of C-reactive protein binding. Sensors and Actuators B: Chemical, 2006, 119, 673-675.	7.8	17
104	Direct Force Measurement of the Interaction Between Liposome and the C2A Domain of Synaptotagmin I using Atomic Force Microscopy. Biotechnology Letters, 2006, 28, 505-509.	2.2	3
105	Structural basis for the presence of a monoglucosylated oligosaccharide in mature glycoproteins. Biochemical and Biophysical Research Communications, 2005, 331, 100-106.	2.1	4
106	DNA replication licensing in somatic and germ cells. Journal of Cell Science, 2004, 117, 5875-5886.	2.0	67
107	Detection of Apoptosis Using the C2A Domain of Synaptotagmin I. Bioconjugate Chemistry, 2004, 15, 983-987.	3.6	72
108	Site-directed mutagenesis of a loop at the active site of E1 (α2β2) of the pyruvate dehydrogenase complex. FEBS Journal, 2003, 270, 861-870.	0.2	21

#	Article	IF	CITATIONS
109	Interactions of the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase component in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. FEBS Journal, 2003, 270, 4488-4496.	0.2	13
110	Prediction of the binding site on E1 in the assembly of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. FEBS Letters, 2003, 555, 405-410.	2.8	5
111	Identification of Key Amino Acid Residues in the Assembly of Enzymes into the Pyruvate Dehydrogenase Complex of Bacillus stearothermophilus:  A Kinetic and Thermodynamic Analysis. Biochemistry, 2002, 41, 10446-10453.	2.5	25
112	Thermodynamic analysis of the binding of component enzymes in the assembly of the pyruvate dehydrogenase multienzyme complex ofBacillus stearothermophilus. Protein Science, 2002, 11, 1091-1100.	7.6	44
113	Sites of limited proteolysis in the pyruvate decarboxylase component of the pyruvate dehydrogenase multienzyme complex ofBacillus stearothermophilusand their role in catalysis. FEBS Journal, 2000, 267, 7158-7169.	0.2	18