Tae Kyu Ahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972419/publications.pdf Version: 2024-02-01

		23544	22808
123	12,870	58	112
papers	citations	h-index	g-index
127	127	127	15843
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hysteresis-less inverted CH ₃ NH ₃ PbI ₃ planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy and Environmental Science, 2015, 8, 1602-1608.	15.6	1,079
2	Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF ₂ –Pyrazine Complex. Journal of the American Chemical Society, 2016, 138, 3974-3977.	6.6	658
3	Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy and Environmental Science, 2015, 8, 916-921.	15.6	602
4	Architecture of a Charge-Transfer State Regulating Light Harvesting in a Plant Antenna Protein. Science, 2008, 320, 794-797.	6.0	492
5	Efficient CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells Employing Nanostructured pâ€Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015, 27, 4013-4019.	11.1	485
6	Photovoltaic Cells Using Composite Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles. Journal of the American Chemical Society, 2005, 127, 1216-1228.	6.6	454
7	Planar CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate. Advanced Materials, 2015, 27, 3424-3430.	11.1	435
8	Photoresponse of CsPbBr ₃ and Cs ₄ PbBr ₆ Perovskite Single Crystals. Journal of Physical Chemistry Letters, 2017, 8, 565-570.	2.1	395
9	Beneficial Effects of Pbl ₂ Incorporated in Organo‣ead Halide Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1502104.	10.2	387
10	Photosynthetic artificial organelles sustain and control ATP-dependent reactions in a protocellular system. Nature Biotechnology, 2018, 36, 530-535.	9.4	271
11	Photovoltaic Properties of Self-Assembled Monolayers of Porphyrins and Porphyrinâ^Fullerene Dyads on ITO and Gold Surfaces. Journal of the American Chemical Society, 2003, 125, 9129-9139.	6.6	258
12	Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy, 2015, 15, 530-539.	8.2	246
13	Quantum-Dot-Sensitized Solar Cell with Unprecedentedly High Photocurrent. Scientific Reports, 2013, 3, 1050.	1.6	228
14	A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core. Journal of the American Chemical Society, 2006, 128, 4119-4127.	6.6	226
15	Tribenzosubporphines: Synthesis and Characterization. Angewandte Chemie - International Edition, 2006, 45, 961-964.	7.2	215
16	Deep level trapped defect analysis in CH ₃ NH ₃ PbI ₃ perovskite solar cells by deep level transient spectroscopy. Energy and Environmental Science, 2017, 10, 1128-1133.	15.6	206
17	Relationship between Two-Photon Absorption and the π-Conjugation Pathway in Porphyrin Arrays through Dihedral Angle Control. Journal of the American Chemical Society, 2006, 128, 1700-1704.	6.6	204
18	Zeaxanthin Radical Cation Formation in Minor Light-harvesting Complexes of Higher Plant Antenna. Journal of Biological Chemistry, 2008, 283, 3550-3558.	1.6	193

#	Article	IF	CITATIONS
19	Porphyrin Boxes Constructed by Homochiral Self-Sorting Assembly:Â Optical Separation, Exciton Coupling, and Efficient Excitation Energy Migration. Journal of the American Chemical Society, 2004, 126, 16187-16198.	6.6	183
20	Lutein Accumulation in the Absence of Zeaxanthin Restores Nonphotochemical Quenching in the <i>Arabidopsis thaliana npq1</i> Mutant Â. Plant Cell, 2009, 21, 1798-1812.	3.1	183
21	Enhancement of Light-Energy Conversion Efficiency by Multi-Porphyrin Arrays of Porphyrinâ^'Peptide Oligomers with Fullerene Clusters. Journal of Physical Chemistry B, 2005, 109, 19-23.	1.2	175
22	Directlymesoâ^'mesoLinked Porphyrin Rings:Â Synthesis, Characterization, and Efficient Excitation Energy Hopping. Journal of the American Chemical Society, 2005, 127, 236-246.	6.6	159
23	Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 46-53.	8.8	158
24	Conflicted Effects of a Solvent Additive on PTB7:PC ₇₁ BM Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2015, 119, 5954-5961.	1.5	155
25	Comparative Photophysics of [26]- and [28]Hexaphyrins(1.1.1.1.1):Â Large Two-Photon Absorption Cross Section of Aromatic [26]Hexaphyrins(1.1.1.1.1). Journal of the American Chemical Society, 2005, 127, 12856-12861.	6.6	142
26	Tandem Synthesis of Photoactive Benzodifuran Moieties in the Formation of Microporous Organic Networks. Angewandte Chemie - International Edition, 2013, 52, 6228-6232.	7.2	141
27	Cross-peak-specific two-dimensional electronic spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14203-14208.	3.3	137
28	A Dodecameric Porphyrin Wheel. Journal of the American Chemical Society, 2004, 126, 4468-4469.	6.6	134
29	Large Two-Photon Absorption (TPA) Cross-Section of Directly Linked Fused Diporphyrins. Journal of Physical Chemistry A, 2005, 109, 2996-2999.	1.1	127
30	Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency. ACS Energy Letters, 2019, 4, 2393-2401.	8.8	127
31	Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. Energy and Environmental Science, 2019, 12, 958-964.	15.6	116
32	Efficient Excitation Energy Transfer in Long Mesoâ^'Meso Linked Zn(II) Porphyrin Arrays Bearing a 5,15-Bisphenylethynylated Zn(II) Porphyrin Acceptor. Journal of the American Chemical Society, 2003, 125, 9668-9681.	6.6	114
33	Highâ€Efficiency Photovoltaic Devices using Trapâ€Controlled Quantumâ€Dot Ink prepared via Phaseâ€Transfer Exchange. Advanced Materials, 2017, 29, 1605756.	11.1	114
34	Unusually High Performance Photovoltaic Cell Based on a [60]Fullerene Metal Clusterâ^'Porphyrin Dyad SAM on an ITO Electrode. Journal of the American Chemical Society, 2005, 127, 2380-2381.	6.6	111
35	Direct Spectroscopic Observation of Interligand Energy Transfer in Cyclometalated Heteroleptic Iridium(III) Complexes:  A Strategy for Phosphorescence Color Tuning and White Light Generation. Journal of Physical Chemistry C, 2007, 111, 4052-4060.	1.5	107
36	Photocatalysis by Phenothiazine Dyes: Visible-Light-Driven Oxidative Coupling of Primary Amines at Ambient Temperature. Organic Letters, 2012, 14, 5502-5505.	2.4	102

#	Article	IF	CITATIONS
37	Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. Journal of Materials Chemistry A, 2017, 5, 7905-7911.	5.2	99
38	Highly Phosphorescent Iridium Complexes with Chromophoric 2-(2-Hydroxyphenyl)oxazole-Based Ancillary Ligands: Interligand Energy-Harvesting Phosphorescence. Inorganic Chemistry, 2008, 47, 1476-1487.	1.9	96
39	Inverted planar perovskite solar cells with dopant free hole transporting material: Lewis base-assisted passivation and reduced charge recombination. Journal of Materials Chemistry A, 2017, 5, 13220-13227.	5.2	96
40	Bifacial Passivation of Organic Hole Transport Interlayer for NiO <i>_x</i> â€Based pâ€iâ€n Perovskite Solar Cells. Advanced Science, 2019, 6, 1802163.	5.6	92
41	Effective Electron Blocking of CuPCâ€Đoped Spiroâ€OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells. Advanced Energy Materials, 2015, 5, 1501320.	10.2	84
42	Excitation-Energy Migration in Self-Assembled Cyclic Zinc(II)-Porphyrin Arrays: A Close Mimicry of a Natural Light-Harvesting System. Chemistry - A European Journal, 2005, 11, 3753-3761.	1.7	81
43	Vectorial Electron Relay at ITO Electrodes Modified with Self-Assembled Monolayers of Ferrocene–Porphyrin–Fullerene Triads and Porphyrin–Fullerene Dyads for Molecular Photovoltaic Devices. Chemistry - A European Journal, 2004, 10, 5111-5122.	1.7	79
44	High Efficiency Low-Temperature Processed Perovskite Solar Cells Integrated with Alkali Metal Doped ZnO Electron Transport Layers. ACS Energy Letters, 2018, 3, 1241-1246.	8.8	77
45	Formation and Encapsulation of All-Inorganic Lead Halide Perovskites at Room Temperature in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2019, 10, 2270-2277.	2.1	77
46	Shallow and Deep Trap State Passivation for Low-Temperature Processed Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1396-1403.	8.8	75
47	Regulation of photosystem I light harvesting by zeaxanthin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2431-8.	3.3	73
48	Lutein Can Act as a Switchable Charge Transfer Quencher in the CP26 Light-harvesting Complex. Journal of Biological Chemistry, 2009, 284, 2830-2835.	1.6	72
49	CuSbS ₂ ‣ensitized Inorganic–Organic Heterojunction Solar Cells Fabricated Using a Metal–Thiourea Complex Solution. Angewandte Chemie - International Edition, 2015, 54, 4005-4009.	7.2	72
50	Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation. Nano Energy, 2017, 39, 86-94.	8.2	72
51	Hollow Microporous Organic Networks Bearing Triphenylamines and Anthraquinones: Diffusion Pathway Effect in Visible Light-Driven Oxidative Coupling of Benzylamines. ACS Macro Letters, 2015, 4, 669-672.	2.3	68
52	Excellent stability of thicker shell CdSe@ZnS/ZnS quantum dots. RSC Advances, 2017, 7, 40866-40872.	1.7	67
53	Management of transition dipoles in organic hole-transporting materials under solar irradiation for perovskite solar cells. Nature Communications, 2018, 9, 4537.	5.8	64
54	Phenothiazine-based organic dyes with two anchoring groups on TiO2 for highly efficient visible light-induced water splitting. Chemical Communications, 2012, 48, 11431.	2.2	63

#	Article	IF	CITATIONS
55	Formamidine disulfide oxidant as a localised electron scavenger for >20% perovskite solar cell modules. Energy and Environmental Science, 2021, 14, 4903-4914.	15.6	63
56	Novel fullerene–porphyrin–fullerene triad linked by metal axial coordination: Synthesis, X-ray crystal structure, and spectroscopic characterizations of trans-bis([60]fullerenoacetato)tin(iv) porphyrin. Chemical Communications, 2004, , 2594-2595.	2.2	62
57	Thermal stability of charged LiNi0.5Co0.2Mn0.3O2 cathode for Li-ion batteries investigated by synchrotron based in situ X-ray diffraction. Journal of Alloys and Compounds, 2013, 562, 219-223.	2.8	62
58	ZnF ₂ -Assisted Synthesis of Highly Luminescent InP/ZnSe/ZnS Quantum Dots for Efficient and Stable Electroluminescence. Nano Letters, 2022, 22, 4067-4073.	4.5	62
59	Microporous organic nanorods with electronic push–pull skeletons for visible light-induced hydrogen evolution from water. Journal of Materials Chemistry A, 2014, 2, 7656.	5.2	60
60	Enhancing the Performance of Sensitized Solar Cells with PbS/CH ₃ NH ₃ PbI ₃ Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2014, 5, 2015-2020.	2.1	59
61	Relationship between Incoherent Excitation Energy Migration Processes and Molecular Structures in Zinc(II) Porphyrin Dendrimers. Chemistry - A European Journal, 2006, 12, 7576-7584.	1.7	58
62	Iridium Complexes Containing Bis(imidazoline thione) and Bis(imidazoline selone) Ligands for Visible-Light-Induced Oxidative Coupling of Benzylamines to Imines. Organometallics, 2013, 32, 3954-3959.	1.1	56
63	Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1903085.	10.2	49
64	Substituent Effects of Porphyrin Monolayers on the Structure and Photoelectrochemical Properties of Self-Assembled Monolayers of Porphyrin on Indiumâ^'Tin Oxide Electrode. Journal of Physical Chemistry B, 2004, 108, 5018-5025.	1.2	47
65	Understanding Photoluminescence of Monodispersed Crystalline Anatase TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2014, 118, 9726-9732.	1.5	46
66	Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 79-86.	5.2	45
67	Improved Processability and Efficiency of Colloidal Quantum Dot Solar Cells Based on Organic Hole Transport Layers. Advanced Energy Materials, 2018, 8, 1800572.	10.2	45
68	Dihedral-Angle Modulation of mesomeso-Linked ZnII Diporphyrin through Diamine Coordination and Its Application to Reversible Switching of Excitation Energy Transfer. Angewandte Chemie - International Edition, 2003, 42, 2754-2758.	7.2	44
69	Comparative Photophysical Properties of Free-Base, Bis-Zn(II), Bis-Cu(II), and Bis-Co(II) Doubly N-Confused Hexaphyrins(1.1.1.1.1). Journal of Physical Chemistry B, 2006, 110, 11683-11690.	1.2	44
70	Investigation into the Advantages of Pure Perovskite Film without PbI2 for High Performance Solar Cell. Scientific Reports, 2016, 6, 35994.	1.6	42
71	Excitation Energy Migration in A Dodecameric Porphyrin Wheel. Journal of Physical Chemistry B, 2005, 109, 8643-8651.	1.2	41
72	A Simple Method To Control Morphology of Hydroxyapatite Nano- and Microcrystals by Altering Phase Transition Route. Crystal Growth and Design, 2013, 13, 3414-3418.	1.4	41

ΤΑΕ ΚΥU ΑΗΝ

#	Article	IF	CITATIONS
73	All-in-One Lewis Base for Enhanced Precursor and Device Stability in Highly Efficient Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3425-3434.	8.8	41
74	Investigation of porosity and heterojunction effects of a mesoporous hematite electrode on photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 9775.	1.3	38
75	Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications. Applied Surface Science, 2020, 505, 144160.	3.1	37
76	Hydration of DNA base cations in the gas phase. International Journal of Mass Spectrometry, 2002, 219, 11-21.	0.7	36
77	N-phenylindole-diketopyrrolopyrrole-containing narrow band-gap materials for dopant-free hole transporting layer of perovskite solar cell. Organic Electronics, 2016, 37, 134-140.	1.4	36
78	Graded heterojunction of perovskite/dopant-free polymeric hole-transport layer for efficient and stable metal halide perovskite devices. Nano Energy, 2020, 78, 105159.	8.2	36
79	Improved performance of colloidal quantum dot solar cells using high-electric-dipole self-assembled layers. Nano Energy, 2017, 39, 355-362.	8.2	34
80	Stabilizing Mixed Halide Lead Perovskites against Photoinduced Phase Segregation by A-Site Cation Alloying. ACS Energy Letters, 2021, 6, 837-847.	8.8	34
81	Effect of Conformational Heterogeneity on Excitation Energy Transfer Efficiency in Directlymesoâ^'mesoLinked Zn(II) Porphyrin Arrays. Journal of Physical Chemistry B, 2005, 109, 11223-11230.	1.2	33
82	Investigating energy partitioning during photosynthesis using an expanded quantum yield convention. Chemical Physics, 2009, 357, 151-158.	0.9	33
83	Synthesis of a CdSe–graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics. Nanoscale, 2013, 5, 1483.	2.8	33
84	Defect Healing in FAPb(I _{1â€} <i>_x</i> Br <i>_xx</i>) ₃ Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21%ÂModules with Improved Operation Stability. Advanced Energy Materials, 2022, 12, .	10.2	32
85	Changes in Antenna Sizes of Photosystems during State Transitions in Granal and Stroma-Exposed Thylakoid Membrane of Intact Chloroplasts in Arabidopsis Mesophyll Protoplasts. Plant and Cell Physiology, 2015, 56, 759-768.	1.5	31
86	Fluorescein dye intercalated layered double hydroxides for chemically stabilized photoluminescent indicators on inorganic surfaces. Dalton Transactions, 2014, 43, 8543-8548.	1.6	30
87	Engineering of Sn–porphyrin networks on the silica surface: sensing of nitrophenols in water. Chemical Communications, 2015, 51, 8781-8784.	2.2	30
88	High-Efficiency Air-Stable Colloidal Quantum Dot Solar Cells Based on a Potassium-Doped ZnO Electron-Accepting Layer. ACS Applied Materials & Interfaces, 2018, 10, 35244-35249.	4.0	30
89	Hollow and sulfonated microporous organic polymers: versatile platforms for non-covalent fixation of molecular photocatalysts. RSC Advances, 2015, 5, 47270-47274.	1.7	29
90	CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pH-triggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids and Surfaces B: Biointerfaces, 2017, 155, 497-506.	2.5	25

ΤΑΕ ΚΥU ΑΗΝ

#	Article	IF	CITATIONS
91	Kinetic Modeling of Charge-Transfer Quenching in the CP29 Minor Complex. Journal of Physical Chemistry B, 2008, 112, 13418-13423.	1.2	24
92	CulnS ₂ /ZnS quantum dot-embedded polymer nanofibers for color conversion films. Journal of Materials Chemistry C, 2016, 4, 2457-2462.	2.7	23
93	Singlet excited state (S1) of higher fullerenes C76 and C84: correlation between lifetime and HOMO–LUMO energy gap. Chemical Physics Letters, 2003, 375, 292-298.	1.2	22
94	Manipulation of Chain Conformation for Optimum Charge-Transport Pathways in Conjugated Polymers. ACS Applied Materials & amp; Interfaces, 2017, 9, 22757-22763.	4.0	17
95	Excited-state lifetime of adenine near the first electronic band origin. Journal of Chemical Physics, 2010, 133, 154311.	1.2	16
96	Understanding the role of the dye/oxide interface via SnO ₂ -based MK-2 dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2015, 17, 15193-15200.	1.3	15
97	Cerium-Doped Yttrium Aluminum Garnet Hollow Shell Phosphors Synthesized via the Kirkendall Effect. ACS Applied Materials & Interfaces, 2014, 6, 1145-1151.	4.0	14
98	Microscopic Analysis of Inherent Void Passivation in Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1705-1710.	8.8	14
99	Morphology and charge recombination effects on the performance of near-infrared photodetectors based on conjugated polymers. Organic Electronics, 2019, 64, 274-279.	1.4	13
100	Discrepancy of Optimum Ratio in Bulk Heterojunction Photovoltaic Devices: Initial Cell Efficiency vs Long-Term Stability. ACS Applied Materials & Interfaces, 2013, 5, 1612-1618.	4.0	12
101	Tailoring Dispersion and Aggregation of Au Nanoparticles in the BHJ Layer of Polymer Solar Cells: Plasmon Effects versus Electrical Effects. ChemSusChem, 2014, 7, 3452-3458.	3.6	12
102	Direct Low-Temperature Growth of Single-Crystalline Anatase TiO ₂ Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 10324-10330.	4.0	12
103	Unusual Hole Transfer Dynamics of the NiO Layer in Methylammonium Lead Tri-iodide Absorber Solar Cells. Journal of Physical Chemistry Letters, 2021, 12, 2770-2779.	2.1	12
104	Improvement of nonlinear response for the power conversion efficiency with light intensities in cobalt complex electrolyte system. Chemical Physics Letters, 2013, 573, 63-69.	1.2	11
105	Visible light-driven Suzuki–Miyaura reaction by self-supported Pd nanocatalysts in the formation of Stille coupling-based photoactive microporous organic polymers. Catalysis Science and Technology, 2020, 10, 5535-5543.	2.1	11
106	Composites of cross-linked perovskite/polymer with sodium borate for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 14884-14893.	5.2	11
107	Excitation energy migration in a dodecameric porphyrin box. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 178, 130-139.	2.0	9
108	Title is missing!. Angewandte Chemie, 2003, 115, 2860-2864.	1.6	8

#	Article	IF	CITATIONS
109	Femtosecond Decay Dynamics of Intact Adenine and Thymine Base Pairs in a Supersonic Jet. ChemPhysChem, 2011, 12, 1935-1939.	1.0	8
110	Synergistic Effect of Excited State Property and Aggregation Characteristic of Organic Semiconductor on Efficient Holeâ€Transportation in Perovskite Device. Advanced Functional Materials, 2021, 31, 2007180.	7.8	8
111	2D representation of life cycle greenhouse gas emission and life cycle cost of energy conversion for various energy resources. Korean Journal of Chemical Engineering, 2013, 30, 1882-1888.	1.2	5
112	Efficient Heterotransfer between Visible Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 4799-4805.	1.5	5
113	Plasmon-enhanced phosphorescence of hybrid thin films of metal-free purely organic phosphor and silver nanoparticles. Chemical Physics Letters, 2017, 676, 134-139.	1.2	5
114	Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1738-1747.	2.5	4
115	Solar Cells: Planar CH3NH3PbI3Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate (Adv. Mater. 22/2015). Advanced Materials, 2015, 27, 3464-3464.	11.1	3
116	Tandem Solar Cells: Wideâ€Bandgap Perovskite/Gallium Arsenide Tandem Solar Cells (Adv. Energy Mater.) Tj ETÇ	2qQ18.2 rgE	BT JOverlock
117	Highly Luminescent Organic Nanorods from Air Oxidation of <i>paraâ€</i> Substituted Anilines for Freestanding Deepâ€Red Color Filters. Advanced Optical Materials, 2018, 6, 1800577.	3.6	2
118	Laser Fabrication of Gold Nanoparticle Clustered Tips for Use in Apertureless Near-Field Scanning Optical Microscopy. Journal of Nanoscience and Nanotechnology, 2014, 14, 5961-5964.	0.9	1
119	Light-Harvesting Lipid Vesicles Incorporated with Proteorhodopsins and Photosystem II; Generation of Photo-Induced Proton Gradients and Extended Absorbing Light Spectrum. Biophysical Journal, 2014, 106, 181a.	0.2	0
120	Charge-selective membrane protein patterning with proteoliposomes. RSC Advances, 2015, 5, 5183-5191.	1.7	0
121	Pâ€9.5: Highly efficient and bright redâ€emission of InP Quantum Dotâ€Based Electroluminescent Devices. Digest of Technical Papers SID International Symposium, 2021, 52, 951-951.	0.1	0
	Perovskite Photovoltaic Cells: Synergistic Effect of Excited State Property and Aggregation		

122 Characteristic of Organic Semiconductor on Efficient Holeâ€Transportation in Perovskite Device (Adv.) Tj ETQq0 0 Ø.8gBT /Oværlock 10 T

123	Defect Healing in FAPb(I _{1â€} <i>_x</i> Br <i>_x</i>) ₃ Perovskites: Multifunctional Fluorinated Sulfonate Surfactant Anchoring Enables >21%ÂModules with Improved Operation Stability (Adv. Energy Mater. 20/2022). Advanced Energy Materials, 2022, 12, .	10.2	0	
-----	---	------	---	--