Johannes Crezee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5972136/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treatment Reviews, 2015, 41, 742-753.	3.4	414
2	The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiation Oncology, 2018, 13, 96.	1.2	301
3	Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiation Oncology, 2015, 10, 165.	1.2	220
4	Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. The Lancet Gastroenterology and Hepatology, 2019, 4, 761-770.	3.7	211
5	Heating technology for malignant tumors: a review. International Journal of Hyperthermia, 2020, 37, 711-741.	1.1	211
6	Hyperthermia-related clinical trials on cancer treatment within the ClinicalTrials.gov registry. International Journal of Hyperthermia, 2015, 31, 609-614.	1.1	173
7	Temperature uniformity during hyperthermia: the impact of large vessels. Physics in Medicine and Biology, 1992, 37, 1321-1337.	1.6	168
8	Hyperthermia: The Optimal Treatment to Overcome Radiation Resistant Hypoxia. Cancers, 2019, 11, 60.	1.7	142
9	Current state of the art of regional hyperthermia treatment planning: a review. Radiation Oncology, 2015, 10, 196.	1.2	122
10	A description of discrete vessel segments in thermal modelling of tissues. Physics in Medicine and Biology, 1996, 41, 865-884.	1.6	115
11	Treatment and prognostic factors of radiation-associated angiosarcoma (RAAS) after primary breast cancer: A systematic review. European Journal of Cancer, 2014, 50, 1779-1788.	1.3	113
12	Experimental verification of bioheat transfer theories: measurement of temperature profiles around large artificial vessels in perfused tissue. Physics in Medicine and Biology, 1990, 35, 905-923.	1.6	109
13	Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: A preclinical study. International Journal of Hyperthermia, 2009, 25, 581-592.	1.1	98
14	Cryoablation induces greater inflammatory and coagulative responses than radiofrequency ablation or laser induced thermotherapy in a rat liver model. Surgery, 2010, 147, 686-695.	1.0	97
15	Quality assurance for clinical studies in regional deep hyperthermia. Strahlentherapie Und Onkologie, 2011, 187, 605-610.	1.0	91
16	Cell survival and radiosensitisation: Modulation of the linear and quadratic parameters of the LQ model. International Journal of Oncology, 2013, 42, 1501-1515.	1.4	88
17	CSI-EPT: A Contrast Source Inversion Approach for Improved MRI-Based Electric Properties Tomography. IEEE Transactions on Medical Imaging, 2015, 34, 1788-1796.	5.4	86
18	Quality assurance guidelines for superficial hyperthermia clinical trials: I. Clinical requirements. International Journal of Hyperthermia, 2017, 33, 471-482.	1.1	86

#	Article	IF	CITATIONS
19	Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Advanced Drug Delivery Reviews, 2020, 163-164, 84-97.	6.6	81
20	Planning, optimisation and evaluation of hyperthermia treatments. International Journal of Hyperthermia, 2017, 33, 593-607.	1.1	77
21	Quality assurance guidelines for superficial hyperthermia clinical trials. Strahlentherapie Und Onkologie, 2017, 193, 351-366.	1.0	73
22	Temperature and thermal dose during radiotherapy and hyperthermia for recurrent breast cancer are related to clinical outcome and thermal toxicity: a systematic review. International Journal of Hyperthermia, 2019, 36, 1023-1038.	1.1	72
23	High-resolution temperature-based optimization for hyperthermia treatment planning. Physics in Medicine and Biology, 2005, 50, 3127-3141.	1.6	69
24	Specific absorption rate intersubject variability in 7T parallel transmit MRI of the head. Magnetic Resonance in Medicine, 2013, 69, 1476-1485.	1.9	64
25	Variation in Clinical Application of Hyperthermic Intraperitoneal Chemotherapy: A Review. Cancers, 2019, 11, 78.	1.7	64
26	Time-Dependent Impact of Irreversible Electroporation on Pancreas, Liver, Blood Vessels and Nerves: A Systematic Review of Experimental Studies. PLoS ONE, 2016, 11, e0166987.	1.1	63
27	Targeting therapy-resistant cancer stem cells by hyperthermia. International Journal of Hyperthermia, 2017, 33, 419-427.	1.1	61
28	Quantifying the Combined Effect of Radiation Therapy and Hyperthermia in Terms of Equivalent Dose Distributions. International Journal of Radiation Oncology Biology Physics, 2014, 88, 739-745.	0.4	60
29	Reirradiation and hyperthermia for irresectable locoregional recurrent breast cancer in previously irradiated area: Size matters. Radiotherapy and Oncology, 2015, 117, 223-228.	0.3	60
30	A short time interval between radiotherapy and hyperthermia reduces in-field recurrence and mortality in women with advanced cervical cancer. Radiation Oncology, 2017, 12, 75.	1.2	60
31	Temperature and SAR measurements in deep-body hyperthermia with thermocouple thermometry. International Journal of Hyperthermia, 1993, 9, 685-697.	1.1	59
32	Accelerated ray tracing for radiotherapy dose calculations on a GPU. Medical Physics, 2009, 36, 4095-4102.	1.6	59
33	Hyperthermia, cisplatin and radiation trimodality treatment: A promising cancer treatment? A review from preclinical studies to clinical application. International Journal of Hyperthermia, 2007, 23, 329-341.	1.1	58
34	Optimization in hyperthermia treatment planning: The impact of tissue perfusion uncertainty. Medical Physics, 2010, 37, 4540-4550.	1.6	58
35	Thermoradiotherapy planning: Integration in routine clinical practice. International Journal of Hyperthermia, 2016, 32, 41-49.	1.1	55
36	The theoretical and experimental evaluation of the heat balance in perfused tissue. Physics in Medicine and Biology, 1994, 39, 813-832.	1.6	54

#	Article	IF	CITATIONS
37	Hyperthermia Selectively Targets Human Papillomavirus in Cervical Tumors via p53-Dependent Apoptosis. Cancer Research, 2015, 75, 5120-5129.	0.4	53
38	Uncertainty in hyperthermia treatment planning: the need for robust system design. Physics in Medicine and Biology, 2011, 56, 3233-3250.	1.6	52
39	Online Adaptive Hyperthermia Treatment Planning During Locoregional Heating to Suppress Treatment-Limiting Hot Spots. International Journal of Radiation Oncology Biology Physics, 2017, 99, 1039-1047.	0.4	51
40	Quality assurance guidelines for interstitial hyperthermia. International Journal of Hyperthermia, 2019, 36, 276-293.	1.1	51
41	Feasibility of Electric Property Tomography of pelvic tumors at 3T. Magnetic Resonance in Medicine, 2015, 73, 1505-1513.	1.9	49
42	A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. International Journal of Hyperthermia, 2017, 33, 378-386.	1.1	49
43	Monitoring of response to pre-operative chemoradiation in combination with hyperthermia in oesophageal cancer by FDG-PET. International Journal of Hyperthermia, 2006, 22, 149-160.	1.1	47
44	<i>In vivo</i> electric conductivity of cervical cancer patients based on \$B_{1}^{+}\$ maps at 3T MRI. Physics in Medicine and Biology, 2016, 61, 1596-1607.	1.6	46
45	Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Frontiers in Oncology, 2020, 10, 819.	1.3	46
46	Hyperthermia treatment planning for cervical cancer patients based on electrical conductivity tissue properties acquired <i>in vivo</i> with EPT at 3 T MRI. International Journal of Hyperthermia, 2016, 32, 558-568.	1.1	44
47	Mathematical modeling of the thermal effects of irreversible electroporation for <i>inÂvitro</i> , <i>inÂvivo</i> , and clinical use: a systematic review. International Journal of Hyperthermia, 2020, 37, 486-505.	1.1	42
48	Thermal modelling using discrete vasculature for thermal therapy: A review. International Journal of Hyperthermia, 2013, 29, 336-345.	1.1	41
49	The clinical benefit of hyperthermia in pancreatic cancer: a systematic review. International Journal of Hyperthermia, 2018, 34, 969-979.	1.1	41
50	Elective re-irradiation and hyperthermia following resection of persistent locoregional recurrent breast cancer: A retrospective study. International Journal of Hyperthermia, 2010, 26, 136-144.	1.1	39
51	Toward Online Adaptive Hyperthermia Treatment Planning: Correlation Between Measured and Simulated Specific Absorption Rate Changes Caused by Phase Steering in Patients. International Journal of Radiation Oncology Biology Physics, 2014, 90, 438-445.	0.4	39
52	The Temperature-Dependent Effectiveness of Platinum-Based Drugs Mitomycin-C and 5-FU during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Colorectal Cancer Cell Lines. Cells, 2020, 9, 1775.	1.8	38
53	Hyperthermia-Based Anti-Cancer Treatments. Cancers, 2021, 13, 1240.	1.7	38
54	Combining Mitomycin C and Regional 70 MHz Hyperthermia in Patients with Nonmuscle Invasive Bladder Cancer: A Pilot Study. Journal of Urology, 2015, 194, 1202-1208.	0.2	37

#	Article	IF	CITATIONS
55	Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiation Oncology, 2016, 11, 14.	1.2	37
56	Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer. International Journal of Hyperthermia, 2006, 22, 375-389.	1.1	36
57	Enhancing the abscopal effect of radiation and immune checkpoint inhibitor therapies with magnetic nanoparticle hyperthermia in a model of metastatic breast cancer. International Journal of Hyperthermia, 2019, 36, 47-63.	1.1	35
58	Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 2018, 34, 30-38.	1.1	34
59	Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks. Medical Physics, 2013, 40, 103303.	1.6	32
60	On verification of hyperthermia treatment planning for cervical carcinoma patients. International Journal of Hyperthermia, 2007, 23, 303-314.	1.1	31
61	3D radiobiological evaluation of combined radiotherapy and hyperthermia treatments. International Journal of Hyperthermia, 2017, 33, 160-169.	1.1	31
62	The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: Importance of longitudinal control. International Journal of Hyperthermia, 1997, 13, 365-385.	1.1	30
63	Modelling individual temperature profiles from an isolated perfused bovine tongue. Physics in Medicine and Biology, 2000, 45, 765-780.	1.6	30
64	Body Conformal Antennas for Superficial Hyperthermia: The Impact of Bending Contact Flexible Microstrip Applicators on Their Electromagnetic Behavior. IEEE Transactions on Biomedical Engineering, 2009, 56, 2917-2926.	2.5	30
65	Chemohyperthermia in non-muscle-invasive bladder cancer: An overview of the literature and recommendations. International Journal of Hyperthermia, 2016, 32, 363-373.	1.1	29
66	Locoregional hyperthermia of deep-seated tumours applied with capacitive and radiative systems: a simulation study. International Journal of Hyperthermia, 2018, 34, 714-730.	1.1	29
67	FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. International Journal of Hyperthermia, 2009, 25, 462-476.	1.1	28
68	Accuracy of geometrical modelling of heat transfer from tissue to blood vessels. Physics in Medicine and Biology, 1997, 42, 1451-1460.	1.6	27
69	Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma. Physics in Medicine and Biology, 2001, 46, 3115-3131.	1.6	27
70	Preoperative chemoradiation combined with regional hyperthermia for patients with resectable esophageal cancer. International Journal of Hyperthermia, 2009, 25, 79-85.	1.1	26
71	3D versus 2D steering in patient anatomies: A comparison using hyperthermia treatment planning. International Journal of Hyperthermia, 2011, 27, 74-85.	1.1	26
72	Hyperthermia Treatment Planning Including Convective Flow in Cerebrospinal Fluid for Brain Tumour Hyperthermia Treatment Using a Novel Dedicated Paediatric Brain Applicator. Cancers, 2019, 11, 1183.	1.7	26

#	Article	IF	CITATIONS
73	Advanced patient-specific hyperthermia treatment planning. International Journal of Hyperthermia, 2020, 37, 992-1007.	1.1	26
74	Deep learningâ€based reconstruction of in vivo pelvis conductivity with a 3D patchâ€based convolutional neural network trained on simulated MR data. Magnetic Resonance in Medicine, 2020, 84, 2772-2787.	1.9	26
75	Thermal dosimetry for bladder hyperthermia treatment. An overview. International Journal of Hyperthermia, 2016, 32, 417-433.	1.1	25
76	Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent. International Journal of Radiation Oncology Biology Physics, 2017, 98, 392-399.	0.4	25
77	Whole-body hyperthermia in combination with systemic therapy in advanced solid malignancies. Critical Reviews in Oncology/Hematology, 2019, 139, 67-74.	2.0	25
78	Radiosensitization by Hyperthermia: The Effects of Temperature, Sequence, and Time Interval in Cervical Cell Lines. Cancers, 2020, 12, 582.	1.7	25
79	Dose uniformity in scanned focused ultrasound hyperthermia. International Journal of Hyperthermia, 1994, 10, 775-784.	1.1	24
80	Improved power steering with double and triple ring waveguide systems: The impact of the operating frequency. International Journal of Hyperthermia, 2011, 27, 224-239.	1.1	24
81	Feasibility of on-line temperature-based hyperthermia treatment planning to improve tumour temperatures during locoregional hyperthermia. International Journal of Hyperthermia, 2018, 34, 1082-1091.	1.1	24
82	Interstitial heating: experiments in artificially perfused bovine tongues. Physics in Medicine and Biology, 1991, 36, 823-833.	1.6	23
83	Tests of the geometrical description of blood vessels in a thermal model using counter-current geometries. Physics in Medicine and Biology, 1997, 42, 1515-1532.	1.6	23
84	A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. International Journal of Hyperthermia, 2004, 20, 647-659.	1.1	23
85	ReirradiationÂ+ hyperthermia for recurrent breast cancer en cuirasse. Strahlentherapie Und Onkologie, 2018, 194, 206-214.	1.0	23
86	The effect of time interval between radiotherapy and hyperthermia on planned equivalent radiation dose. International Journal of Hyperthermia, 2018, 34, 901-909.	1.1	23
87	Enhancing synthetic lethality of PARP-inhibitor and cisplatin in BRCA-proficient tumour cells with hyperthermia. Oncotarget, 2017, 8, 28116-28124.	0.8	23
88	Comparison of temperature distributions in interstitial hyperthermia: experiments in bovine tongues versus generic simulations. Physics in Medicine and Biology, 1998, 43, 1199-1214.	1.6	22
89	Accuracy and precision of electrical permittivity mapping at 3T: the impact of three mapping techniques. Magnetic Resonance in Medicine, 2019, 81, 3628-3642.	1.9	22
90	Adjuvant HIPEC in patients with colon cancer at high risk of peritoneal metastases: Primary outcome of the COLOPEC multicenter randomized trial Journal of Clinical Oncology, 2019, 37, 482-482.	0.8	22

#	Article	IF	CITATIONS
91	Colorectal cancer at high risk of peritoneal metastases: long term outcomes of a pilot study on adjuvant laparoscopic HIPEC and future perspectives. Oncotarget, 2017, 8, 51200-51209.	0.8	22
92	A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the multi electrode current source (MECS) system. International Journal of Hyperthermia, 2004, 20, 451-463.	1.1	20
93	Predictive value of simulated SAR and temperature for changes in measured temperature after phase-amplitude steering during locoregional hyperthermia treatments. International Journal of Hyperthermia, 2018, 35, 330-339.	1.1	19
94	Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Delivery, 2021, 28, 145-161.	2.5	19
95	Delineation of potential hot spots for hyperthermia treatment planning optimisation. International Journal of Hyperthermia, 2007, 23, 287-301.	1.1	18
96	SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. International Journal of Hyperthermia, 2010, 26, 171-184.	1.1	18
97	Feasibility of adjuvant laparoscopic hyperthermic intraperitoneal chemotherapy in a short stay setting inÂpatients with colorectal cancer at high risk of peritoneal carcinomatosis. European Journal of Surgical Oncology, 2014, 40, 1453-1458.	0.5	18
98	Enhancing radiosensitisation of BRCA2-proficient and BRCA2-deficient cell lines with hyperthermia and PARP1- <i>i</i> . International Journal of Hyperthermia, 2018, 34, 39-48.	1.1	18
99	Dose uniformity in MECS interstitial hyperthermia: the impact of longitudinal control in model anatomies. Physics in Medicine and Biology, 1996, 41, 429-444.	1.6	17
100	Improving hyperthermia treatment planning for the pelvis by accurate fluid modeling. Medical Physics, 2016, 43, 5442-5452.	1.6	17
101	The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Frontiers in Oncology, 2019, 9, 412.	1.3	17
102	Hyperthermia Treatment Planning: Clinical Application and Ongoing Developments. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2021, 5, 214-222.	2.3	17
103	Modulating the Heat Stress Response to Improve Hyperthermia-Based Anticancer Treatments. Cancers, 2021, 13, 1243.	1.7	17
104	The role of hyperthermia in the treatment of locally advanced cervical cancer: a comprehensive review. International Journal of Gynecological Cancer, 2022, 32, 288-296.	1.2	17
105	Deep learning DCE-MRI parameter estimation: Application in pancreatic cancer. Medical Image Analysis, 2022, 80, 102512.	7.0	17
106	Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. International Journal of Hyperthermia, 2015, 31, 443-452.	1.1	16
107	Clinical Evidence for Thermometric Parameters to Guide Hyperthermia Treatment. Cancers, 2022, 14, 625.	1.7	16
108	Analysis of clinical data to determine the minimum number of sensors required for adequate skin temperature monitoring of superficial hyperthermia treatments. International Journal of Hyperthermia, 2018, 34, 910-917.	1.1	15

#	Article	IF	CITATIONS
109	Technical and Clinical Evaluation of the ALBA-4D 70MHz Loco-Regional Hyperthermia System. , 2018, , .		15
110	Locoregional peritoneal hyperthermia to enhance the effectiveness of chemotherapy in patients with peritoneal carcinomatosis: a simulation study comparing different locoregional heating systems. International Journal of Hyperthermia, 2020, 37, 76-88.	1.1	14
111	Preclinical In Vivo-Models to Investigate HIPEC; Current Methodologies and Challenges. Cancers, 2021, 13, 3430.	1.7	14
112	Treatment planning facilitates clinical decision making for hyperthermia treatments. International Journal of Hyperthermia, 2021, 38, 532-551.	1.1	14
113	Sensitizing thermochemotherapy with a PARP1-inhibitor. Oncotarget, 2017, 8, 16303-16312.	0.8	14
114	Radiotherapy combined with hyperthermia for primary malignant melanomas of the esophagus. Ecological Management and Restoration, 2010, 23, E42-E47.	0.2	13
115	Rib fractures after reirradiation plus hyperthermia for recurrent breast cancer. Strahlentherapie Und Onkologie, 2016, 192, 240-247.	1.0	13
116	Enhancement of Radiation Effectiveness in Cervical Cancer Cells by Combining Ionizing Radiation with Hyperthermia and Molecular Targeting Agents. International Journal of Molecular Sciences, 2018, 19, 2420.	1.8	13
117	Spatial temperature control with a 27 MHz current source interstitial hyperthermia system. International Journal of Radiation Oncology Biology Physics, 1997, 37, 189-197.	0.4	12
118	Thermal properties of capacitively coupled electrodes in interstitial hyperthermia. Physics in Medicine and Biology, 1998, 43, 139-153.	1.6	12
119	Comparison of two different 70 MHz applicators for large extremity lesions: Simulation and application. International Journal of Hyperthermia, 2010, 26, 376-388.	1.1	12
120	Response: Commentary: The Impact of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in Patients With Locally Advanced Cervical Cancer. Frontiers in Oncology, 2020, 10, 528.	1.3	12
121	Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power. Physics in Medicine and Biology, 1997, 42, 1087-1108.	1.6	11
122	Relation between body size and temperatures during locoregional hyperthermia of oesophageal cancer patients. International Journal of Hyperthermia, 2008, 24, 663-674.	1.1	11
123	Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia. International Journal of Hyperthermia, 2009, 25, 542-553.	1.1	11
124	Dose-Guided Radiotherapy: Potential Benefit of Online Dose Recalculation for Stereotactic Lung Irradiation in Patients With Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, e557-e562.	0.4	11
125	B1-based SAR reconstruction using contrast source inversion–electric properties tomography (CSI-EPT). Medical and Biological Engineering and Computing, 2017, 55, 225-233.	1.6	11
126	Clinical validation of a novel thermophysical bladder model designed to improve the accuracy of hyperthermia treatment planning in the pelvic region. International Journal of Hyperthermia, 2018, 35, 383-397.	1.1	11

#	Article	IF	CITATIONS
127	Post-operative re-irradiation with hyperthermia in locoregional breast cancer recurrence: Temperature matters. Radiotherapy and Oncology, 2022, 167, 149-157.	0.3	11
128	A perfusion technique for tongues to be used in bioheat transfer studies. Physics in Medicine and Biology, 1991, 36, 843-846.	1.6	10
129	Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators. Physics in Medicine and Biology, 1999, 44, 1499-1511.	1.6	10
130	Spatial steering with quadruple electrodes in 27MHz capacitively coupled interstitial hyperthermia. International Journal of Hyperthermia, 1999, 15, 145-156.	1.1	10
131	Theoretical comparison of intraluminal heating techniques. International Journal of Hyperthermia, 2007, 23, 395-411.	1.1	10
132	The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage. Physics in Medicine and Biology, 2010, 55, 4899-4916.	1.6	10
133	Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain. Magnetic Resonance in Medicine, 2020, 83, 590-607.	1.9	10
134	Numerical analysis of capacitively coupled electrodes for interstitial hyperthermia. International Journal of Hyperthermia, 1997, 13, 607-619.	1.1	9
135	Implications of using thermocouple thermometry in 27 MHz capacitively coupled interstitial hyperthermia. Physics in Medicine and Biology, 1997, 42, 637-650.	1.6	8
136	Reliability of temperature and SAR measurements at oesophageal tumour locations. International Journal of Hyperthermia, 2006, 22, 545-561.	1.1	8
137	Clinical Feasibility of a High-Resolution Thermal Monitoring Sheet for Superficial Hyperthermia in Breast Cancer Patients. Cancers, 2020, 12, 3644.	1.7	8
138	Demonstration of treatment planning software for hyperthermic intraperitoneal chemotherapy in a rat model. International Journal of Hyperthermia, 2021, 38, 38-54.	1.1	8
139	Two high-resolution thermal monitoring sheets for clinical superficial hyperthermia. Physics in Medicine and Biology, 2020, 65, 175021.	1.6	8
140	An international multicenter phase III study of chemoradiotherapy versus chemoradiotherapy plus hyperthermia for locally advanced cervical cancer Journal of Clinical Oncology, 2016, 34, e17023-e17023.	0.8	8
141	Adapt2Heat: treatment planning-assisted locoregional hyperthermia by on-line visualization, optimization and re-optimization of SAR and temperature distributions. International Journal of Hyperthermia, 2022, 39, 265-277.	1.1	8
142	On estimation of the temperature maximum in intraluminal or intracavitary hyperthermia. International Journal of Hyperthermia, 2005, 21, 287-304.	1.1	7
143	Novel Multisensor Probe for Monitoring Bladder Temperature During Locoregional Chemohyperthermia for Nonmuscle-Invasive Bladder Cancer: Technical Feasibility Study. Journal of Endourology, 2013, 27, 1504-1509.	1.1	7
144	A flexible 70 MHz phase-controlled double waveguide system for hyperthermia treatment of superficial tumours with deep infiltration. International Journal of Hyperthermia, 2017, 33, 1-14.	1.1	7

#	Article	IF	CITATIONS
145	A Four-Inflow Construction to Ensure Thermal Stability and Uniformity during Hyperthermic Intraperitoneal Chemotherapy (HIPEC) in Rats. Cancers, 2020, 12, 3516.	1.7	7
146	Modelling Curved Contact Flexible Microstrip Applicators for Patient-Specific Superficial Hyperthermia Treatment Planning. Cancers, 2020, 12, 656.	1.7	7
147	The use of hyperthermia in the treatment of bladder cancer. International Journal of Hyperthermia, 2016, 32, 349-350.	1.1	6
148	Experimental validation of a thermophysical fluid model for use in a hyperthermia treatment planning system. International Journal of Heat and Mass Transfer, 2020, 152, 119495.	2.5	6
149	Clinical thermometry, using the 27 MHz multi-electrode current-source interstitial hyperthermia system in brain tumours. Radiotherapy and Oncology, 2001, 59, 227-231.	0.3	5
150	Dedicated 70 MHz RF systems for hyperthermia of challenging tumor locations. International Journal of Microwave and Wireless Technologies, 2020, 12, 839-847.	1.5	5
151	Artefacts in intracavitary temperature measurements during regional hyperthermia. Physics in Medicine and Biology, 2007, 52, 5157-5171.	1.6	4
152	Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping. Medical Physics, 2009, 36, 3795-3805.	1.6	4
153	CSI-EPT: A novel contrast source approach to MRI based electric properties tomography and patient-specific SAR. , 2013, , .		4
154	Loco-regional Hyperthermia Delivery: Patient-specific set-up Procedures for Treatment Optimisation. , 2020, , .		4
155	HyCHEED System for Maintaining Stable Temperature Control during Preclinical Irreversible Electroporation Experiments at Clinically Relevant Temperature and Pulse Settings. Sensors, 2020, 20, 6227.	2.1	4
156	PARP1-Inhibition Sensitizes Cervical Cancer Cell Lines for Chemoradiation and Thermoradiation. Cancers, 2021, 13, 2092.	1.7	4
157	A randomized phase-II study of reirradiation and hyperthermia versus reirradiation and hyperthermia plus chemotherapy for locally recurrent breast cancer in previously irradiated area. Acta Oncológica, 2022, 61, 441-448.	0.8	4
158	A scalable hyperthermic intravesical chemotherapy (HIVEC) setup for rat models of bladder cancer. Scientific Reports, 2022, 12, 7017.	1.6	4
159	Quantification of the Contribution of Hyperthermia to Results of Cervical Cancer Trials: In Regard to Plataniotis and Dale (Int J Radiat Oncol Biol Phys 2009;73:1538–1544). International Journal of Radiation Oncology Biology Physics, 2009, 75, 634.	0.4	3
160	Automatic delineation of body contours on cone-beam CT images using a delineation booster. Physics in Medicine and Biology, 2012, 57, N225-N236.	1.6	3
161	Analysis of enhancement at small and large radiation doses for effectiveness of inactivation in cultured cells by combining two agents with radiation. International Journal of Radiation Biology, 2016, 92, 521-526.	1.0	3

Progress and future directions in hyperthermia treatment planning. , 2017, , .

3

#	Article	IF	CITATIONS
163	Development of a 70 MHz unit for hyperthermia treatment of deep-seated breast tumors. International Journal of Microwave and Wireless Technologies, 2017, 9, 1317-1324.	1.5	3
164	The effect of air pockets in the urinary bladder on the temperature distribution during loco-regional hyperthermia treatment of bladder cancer patients. International Journal of Hyperthermia, 2018, 35, 441-449.	1.1	3
165	Hyperthermia treatment planning: clinical application and ongoing research. , 2020, , .		3
166	Thermodynamic profiling during irreversible electroporation in porcine liver and pancreas: a case study series. Journal of Clinical and Translational Research, 2020, 5, 109-132.	0.3	3
167	Improving Prediction of the Potential Distribution Induced by Cylindrical Electrodes within a Homogeneous Rectangular Grid during Irreversible Electroporation. Applied Sciences (Switzerland), 2022, 12, 1471.	1.3	3
168	A 70 MHz double waveguide set-up for hyperthermia of deep superficial tumors. , 2016, , .		2
169	Development of electrical properties tomography for hyperthermia treatment planning. , 2017, , .		2
170	RF Heating of Pancreatic Tumours Guided by Hyperthermia Treatment Planning and Limited Thermometry. , 2018, , .		2
171	Effect of gastrointestinal gas on the temperature distribution in pancreatic cancer hyperthermia treatment planning. International Journal of Hyperthermia, 2021, 38, 229-240.	1.1	2
172	Future Developments in Respect of Thermal Modeling, Treatment Planning, and Treatment Control for Interstitial Hyperthermia. Medical Radiology, 1993, , 155-159.	0.0	2
173	Thermal Model Verification in Interstitial Hyperthermia. Medical Radiology, 1993, , 147-153.	0.0	2
174	Basics of Thermal Models. Medical Radiology, 1995, , 425-437.	0.0	2
175	Fast Adaptive Temperature-Based Re-Optimization Strategies for On-Line Hot Spot Suppression during Locoregional Hyperthermia. Cancers, 2022, 14, 133.	1.7	2
176	Development of a 70 MHz unit for hyperthermia treatment of deep seated breast tumors. , 2016, , .		1
177	Clinical use of a waveguide hyperthermia system for superficial tumors with deep infiltration. , 2017, ,		1
178	Hyperthermia of deep seated pelvic tumors with a phased array of eight versus four 70 MHz waveguides. , 2017, , .		1
179	Reâ€'irradiation plus hyperthermia for recurrent pediatric sarcoma; a simulation study to investigate feasibility. International Journal of Oncology, 2018, 54, 209-218.	1.4	1
180	Adaptive Treatment Planning for Locoregional Hyperthermia: A Necessary Tool for Optimizing Treatment Quality. , 2018, , .		1

#	Article	IF	CITATIONS
181	Combining 70MHz and 434MHz or wIRA Hyperthermia Applicators for Optimal Coverage of Semi-Deep Tumour Sites. , 2019, , .		1
182	Principles of Treatment Planning. Medical Radiology, 1995, , 439-451.	0.0	1
183	Thermal Modeling of Vascular Patterns and Their Impact on Interstitial Heating Technology and Temperature Monitoring. Medical Radiology, 1993, , 131-137.	0.0	1
184	Combined Use of wIRA and Microwave or Radiofrequency Hyperthermia. , 2022, , 97-106.		1
185	Non-Invasive Imaging and Scoring of Peritoneal Metastases in Small Preclinical Animal Models Using Ultrasound: A Preliminary Trial. Biomedicines, 2022, 10, 1610.	1.4	1
186	Novel multi-sensor probe for monitoring bladder temperature during loco-regional chemo-hyperthermia for non-muscle invasive bladder cancer: technical feasibility study. Journal of Endourology, 2013, , 150127063130004.	1.1	0
187	OC-0334: Reirradiation plus hyperthermia for irresectable recurrent breast cancer; size matters. Radiotherapy and Oncology, 2015, 115, S165.	0.3	Ο
188	A mixed frequency approach to optimize locoregional RF hyperthermia. , 2015, , .		0
189	Development of a 27.12 MHz CC-LCF intraluminal applicator for hyperthermia of the esophagus. , 2015, , \cdot		0
190	OC-0548: Hyperthermia treatment planning in the pelvis using thermophysical fluid modelling of the bladder. Radiotherapy and Oncology, 2016, 119, S261-S262.	0.3	0
191	PO-0723: Short time interval between radiation and hyperthermia improves treatment outcome in cervical cancer. Radiotherapy and Oncology, 2016, 119, S338-S339.	0.3	0
192	EP-2024: Optimising hyperthermia induced radiosensitisaion for treating HPV+ cervical tumours. Radiotherapy and Oncology, 2016, 119, S955-S956.	0.3	0
193	OC-0054: Reirradiation+hyperthermia for recurrent breast canceren-cuirasse in previously irradiated area. Radiotherapy and Oncology, 2016, 119, S23.	0.3	0
194	Time-dependent impact of irreversible electroporation on pancreas, liver, blood vessels and nerves: a systematic review of experimental studies. Hpb, 2017, 19, S126.	0.1	0
195	PO-0656: Reirradiation+hyperthermia after surgery for recurrent breast cancer: 70% 5-year local control. Radiotherapy and Oncology, 2017, 123, S342-S343.	0.3	0
196	EP-1729: Air pockets in the urinary bladder during hyperthermia treatment reduce thermal dose. Radiotherapy and Oncology, 2017, 123, S949-S950.	0.3	0
197	Design and use of phased array RF systems for loco-regional hyperthermia of deep seated tumors. , 2018, , .		0
198	Professor Gerrit Willem (Eddie) Barendsen, August 14, 1927 – June 20, 2018. International Journal of Radiation Oncology Biology Physics, 2018, 102, 483-484.	0.4	0

#	Article	IF	CITATIONS
199	Evaluation of the Treatment Planning of Interstitial Hyperthermia of Glioblastomas. , 2000, , 486-488.		0
200	EMF methods for hyperthermia. , 2012, , .		0
201	SU-F-J-05: The Effect of Air Pockets in the Urinary Bladder During Bladder Hyperthermia Treatment. Medical Physics, 2016, 43, 3406-3406.	1.6	0