Junjun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomedical Microdevices, 2015, 17, 36.	2.8	159
2	Human Pluripotent Stem Cell-Derived Cardiac Tissue-like Constructs for Repairing the Infarcted Myocardium. Stem Cell Reports, 2017, 9, 1546-1559.	4.8	107
3	Induction and differentiation of human induced pluripotent stem cells into functional cardiomyocytes on a compartmented monolayer of gelatin nanofibers. Nanoscale, 2016, 8, 14530-14540.	5.6	52
4	Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials, 2017, 124, 47-54.	11.4	40
5	A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions. Microelectronic Engineering, 2013, 111, 199-203.	2.4	37
6	Low Cell-Matrix Adhesion Reveals Two Subtypes of Human Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 142-156.	4.8	37
7	A Compact Disk-Like Centrifugal Microfluidic System for High-Throughput Nanoliter-Scale Protein Crystallization Screening. Analytical Chemistry, 2010, 82, 4362-4369.	6.5	33
8	Effective motor neuron differentiation of hiPSCs on a patch made of crosslinked monolayer gelatin nanofibers. Journal of Materials Chemistry B, 2016, 4, 3305-3312.	5.8	33
9	Circulating re-entrant waves promote maturation of hiPSC-derived cardiomyocytes in self-organized tissue ring. Communications Biology, 2020, 3, 122.	4.4	32
10	Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary. Optical Materials, 2012, 34, 1588-1592.	3.6	31
11	hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. International Journal of Molecular Sciences, 2020, 21, 8893.	4.1	27
12	Patterning of Two-Level Topographic Cues for Observation of Competitive Guidance of Cell Alignment. ACS Applied Materials & Interfaces, 2012, 4, 3888-3892.	8.0	20
13	Probing cytotoxicity of CdSe and CdSe/CdS quantum dots. Chinese Chemical Letters, 2011, 22, 843-846.	9.0	19
14	Phenotypic recapitulation and correction of desmoglein-2-deficient cardiomyopathy using human-induced pluripotent stem cell-derived cardiomyocytes. Human Molecular Genetics, 2021, 30, 1384-1397.	2.9	19
15	Modeling reduced contractility and impaired desmosome assembly due to plakophilin-2 deficiency using isogenic iPS cell-derived cardiomyocytes. Stem Cell Reports, 2022, 17, 337-351.	4.8	18
16	Therapeutic efficacy of large aligned cardiac tissue derived from induced pluripotent stem cell in a porcine ischemic cardiomyopathy model. Journal of Heart and Lung Transplantation, 2021, 40, 767-777.	0.6	17
17	Fabrication of gelatin nanopatterns for cell culture studies. Microelectronic Engineering, 2013, 110, 70-74.	2.4	14
18	Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers. Stem Cells International, 2016, 2016, 1-9.	2.5	12

Junjun Li

#	Article	IF	CITATIONS
19	Anisotropic Wet Etched Silicon Substrates for Reoriented and Selective Growth of ZnO Nanowires and Enhanced Hydrophobicity. Langmuir, 2011, 27, 6549-6553.	3.5	10
20	Culture substrates made of elastomeric micro-tripod arrays for long-term expansion of human pluripotent stem cells. Journal of Materials Chemistry B, 2017, 5, 236-244.	5.8	10
21	Isolation and characterization of ventricular-like cells derived from NKX2-5 and MLC2v double knock-in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 1278-1284.	2.1	9
22	Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells. Stem Cell Research and Therapy, 2022, 13, .	5.5	9
23	Engineered three-dimensional cardiac tissues maturing in a rotating wall vessel bioreactor remodel diseased hearts in rats with myocardial infarction. Stem Cell Reports, 2022, 17, 1170-1182.	4.8	7
24	Facile synthesis of ZnO nanowires on FTO glass for dye-sensitized solar cells. Journal of Semiconductors, 2013, 34, 074002.	3.7	6
25	On chip purification of hiPSC-derived cardiomyocytes using a fishnet-like microstructure. Biofabrication, 2016, 8, 035017.	7.1	5
26	Human-Induced Pluripotent Stem Cell–Derived Cardiomyocyte Model for <i>TNNT2</i> Δ160E-Induced Cardiomyopathy. Circulation Genomic and Precision Medicine, 2022, 15, .	3.6	5
27	Upside and downside views of adherent cells on patterned substrates: Three-dimensional image reconstruction. Microelectronic Engineering, 2013, 110, 365-368.	2.4	4
28	Microfluidic capture of endothelial progenitor cells in human blood samples. Microelectronic Engineering, 2013, 111, 262-266.	2.4	4
29	Analysis of Circulating Waves in Tissue Rings derived from Human Induced Pluripotent Stem Cells. Scientific Reports, 2020, 10, 2984.	3.3	4
30	Clonal Isolation of Human Pluripotent Stem Cells on Nanofibrous Substrates Reveals an Advanced Subclone for Cardiomyocyte Differentiation. Advanced Healthcare Materials, 2019, 8, 1900165.	7.6	3
31	A novel L-Lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. , 2010, , .		2
32	Fabrication of Thick and Anisotropic on Nanofibrous Substrate for Repairing Infarcted Myocardium. Methods in Molecular Biology, 2021, 2320, 65-73.	0.9	1
33	Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomedical Materials (Bristol), 2022, 17, 025014.	3.3	1
34	Improved Sensing Membrane Immobilization for Enhanced Long-Term Stability of Iodide Ion-Selective Microelectrode. Nanoscience and Nanotechnology Letters, 2013, 5, 699-703.	0.4	0
35	Improved Enzyme Immobilization for Enhanced Bioelectrocatalytic Activity of Choline Sensor. Nanoscience and Nanotechnology Letters, 2013, 5, 660-665.	0.4	0