Hyosim Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971668/publications.pdf Version: 2024-02-01

HVOSIM KIM

#	Article	IF	CITATIONS
1	Void swelling of conventional and composition engineered HT9 alloys after high-dose self-ion irradiation. Journal of Nuclear Materials, 2022, 560, 153492.	1.3	7
2	A Novel Microshear Geometry for Exploring the Influence of Void Swelling on the Mechanical Properties Induced by MeV Heavy Ion Irradiation. Materials, 2022, 15, 4253.	1.3	2
3	Oxide dispersoid coherency of a ferritic-martensitic 12Cr oxide-dispersion-strengthened alloy under self-ion irradiation. Journal of Nuclear Materials, 2021, 544, 152671.	1.3	2
4	Helium retention, bubble superlattice formation and surface blistering in helium-irradiated tungsten. Journal of Nuclear Materials, 2021, 545, 152722.	1.3	6
5	Irradiation-induced swelling of pure chromium with 5 MeV Fe ions in the temperature range 450–650°C. Journal of Nuclear Materials, 2021, 543, 152585.	1.3	12
6	Microstructural and micro-mechanical analysis of 14YWT nanostructured Ferritic alloy after varying thermo-mechanical processing paths into tubing. Materials Characterization, 2021, 171, 110744.	1.9	5
7	Comparison of void swelling of ferritic-martensitic and ferritic HT9 alloys after high-dose self-ion irradiation. Materials Characterization, 2021, 173, 110908.	1.9	11
8	Radiation-Enhanced Anion Transport in Hematite. Chemistry of Materials, 2021, 33, 2307-2318.	3.2	7
9	ZrN Phase Formation, Hardening and Nitrogen Diffusion Kinetics in Plasma Nitrided Zircaloy-4. Materials, 2021, 14, 3572.	1.3	4
10	Influence of Irradiation-Induced Defects on Anion Transport in Epitaxial Cr ₂ O ₃ . Microscopy and Microanalysis, 2021, 27, 2904-2905.	0.2	1
11	Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining. Nanomaterials, 2021, 11, 2538.	1.9	3
12	Limitations of Thermal Stability Analysis via In-Situ TEM/Heating Experiments. Nanomaterials, 2021, 11, 2541.	1.9	0
13	Demonstration of a High-Throughput Tensile Testing Technique Using Femtosecond Laser-Fabricated Tensile Bars in AISI 316 and Additively Manufactured Grade 91 Steel. Jom, 2021, 73, 4240-4247.	0.9	2
14	Continuous Monitoring of Pure Fe Corrosion in Lead-Bismuth Eutectic Under Irradiation with Proton-Induced X-ray Emission Spectroscopy. Jom, 2021, 73, 4041-4050.	0.9	2
15	Radiation Enhanced Anion Diffusion in Chromia. Journal of Physical Chemistry C, 2021, 125, 27820-27827.	1.5	5
16	Radiation response of a Fe–20Cr–25Ni austenitic stainless steel under Fe2+ irradiation at 500°C. Materialia, 2020, 9, 100542.	1.3	8
17	Ni coating on 316L stainless steel using cage plasma treatment: Feasibility and swelling studies. Journal of Nuclear Materials, 2020, 540, 152385.	1.3	18
18	Sizing up mechanical testing: Comparison of microscale and mesoscale mechanical testing techniques on a FeCrAl welded tube. Journal of Materials Research, 2020, 35, 2817-2830.	1.2	8

Нуозім Кім

#	Article	IF	CITATIONS
19	A pathway to synthesizing single-crystal Fe and FeCr films. Surface and Coatings Technology, 2020, 403, 126346.	2.2	6
20	Radiation response of FeCrAl-coated Zircaloy-4. Journal of Nuclear Materials, 2020, 536, 152175.	1.3	6
21	Swelling resistance of advanced austenitic alloy A709 and its comparison with 316 stainless steel at high damage levels. Journal of Nuclear Materials, 2019, 527, 151818.	1.3	23
22	Effect of Helium on Dispersoid Evolution under Self-Ion Irradiation in A Dual-Phase 12Cr Oxide-Dispersion-Strengthened Alloy. Materials, 2019, 12, 3343.	1.3	4
23	Nitrogen ion implantation into pure iron for formation of surface nitride layer. Nuclear Instruments & Methods in Physics Research B, 2019, 451, 10-13.	0.6	7
24	The Effect of Internal Free Surfaces on Void Swelling of Irradiated Pure Iron Containing Subsurface Trenches. Crystals, 2019, 9, 252.	1.0	4
25	Ion cutting of amorphous metals by using helium ion implantation. Nuclear Instruments & Methods in Physics Research B, 2019, 451, 1-5.	0.6	2
26	Radiation response of Ti2AlC MAX phase coated Zircaloy-4 for accident tolerant fuel cladding. Journal of Nuclear Materials, 2019, 523, 26-32.	1.3	33
27	Interface reactions and mechanical properties of FeCrAl-coated Zircaloy-4. Journal of Nuclear Materials, 2019, 519, 57-63.	1.3	26
28	Impact of composition modification induced by ion beam Coulomb-drag effects on the nanoindentation hardness of HT9. Nuclear Instruments & Methods in Physics Research B, 2019, 444, 68-73.	0.6	14
29	Carbon Contamination, Its Consequences and Its Mitigation in Ion-Simulation of Neutron-Induced Swelling of Structural Metals. Minerals, Metals and Materials Series, 2019, , 681-693.	0.3	2
30	Carbon Contamination, Its Consequences and Its Mitigation in Ion-Simulation of Neutron-Induced Swelling of Structural Metals. Minerals, Metals and Materials Series, 2018, , 681-693.	0.3	2
31	Dispersoid stability in ion irradiated oxide-dispersion-strengthened alloy. Journal of Nuclear Materials, 2018, 509, 504-512.	1.3	10
32	Radiation instability of equal channel angular extruded T91 at ultra-high damage levels. Acta Materialia, 2017, 132, 395-404.	3.8	31
33	Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 251-254.	0.6	34
34	Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2017, 409, 259-263.	0.6	13
35	Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling. Materials Research Letters, 2017, 5, 478-485.	4.1	45
36	Radiation response of alloy T91 at damage levels up to 1000 peak dpa. Journal of Nuclear Materials, 2016, 482, 257-265.	1.3	59

#	Article	IF	CITATIONS
37	Evaluation of the Monte Carlo method (KTMAN-2) in fluoroscopic dosimetry and comparison with experiment. Journal of the Korean Physical Society, 2014, 64, 936-940.	0.3	1