
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971256/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A direct spectropolarimetric assay of arabinose 5-phosphate isomerase. Analytical Biochemistry, 2021, 622, 114116.	2.4	1
2	Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. Journal of Biological Chemistry, 2019, 294, 19405-19423.	3.4	12
3	Identification of a <scp>d</scp> -Arabinose-5-Phosphate Isomerase in the Gram-Positive Clostridium tetani. Journal of Bacteriology, 2017, 199, .	2.2	7
4	Arabinose 5-phosphate isomerase as a target for antibacterial design: Studies with substrate analogues and inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 2576-2583.	3.0	10
5	A Novel Glucose 6-Phosphate Isomerase from Listeria monocytogenes. Protein Journal, 2014, 33, 447-456.	1.6	3
6	Analysis of the Arabinose-5-Phosphate Isomerase of Bacteroides fragilis Provides Insight into Regulation of Single-Domain Arabinose Phosphate Isomerases. Journal of Bacteriology, 2014, 196, 2861-2868.	2.2	3
7	A novel strategy for enhancing extracellular secretion of recombinant proteins in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97, 6705-6713.	3.6	26
8	Extracellular Location of Thermobifida fusca Cutinase Expressed in Escherichia coli BL21(DE3) without Mediation of a Signal Peptide. Applied and Environmental Microbiology, 2013, 79, 4192-4198.	3.1	57
9	Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6253-6258.	7.1	45
10	Extracellular overexpression of recombinant Thermobifida fusca cutinase by alpha-hemolysin secretion system in E. coli BL21(DE3). Microbial Cell Factories, 2012, 11, 8.	4.0	42
11	Structure and characterization of the 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Aeropyrum pernix. Bioorganic Chemistry, 2012, 40, 79-86.	4.1	23
12	Evidence for a Two-Metal-Ion Mechanism in the Cytidyltransferase KdsB, an Enzyme Involved in Lipopolysaccharide Biosynthesis. PLoS ONE, 2011, 6, e23231.	2.5	12
13	Enediol mimics as inhibitors of the d-arabinose 5-phosphate isomerase (KdsD) from Francisella tularensis. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2679-2682.	2.2	16
14	A simple assay for 3-deoxy-d-manno-octulosonate cytidylyltransferase and its use as a pathway screen. Analytical Biochemistry, 2011, 416, 152-158.	2.4	8
15	A Unique Arabinose 5-Phosphate Isomerase Found within a Genomic Island Associated with the Uropathogenicity of Escherichia coli CFT073. Journal of Bacteriology, 2011, 193, 2981-2988.	2.2	8
16	An unassigned DAHP synthase activity found only in pathogenic Escherichia coli strains. FASEB Journal, 2011, 25, 967.8.	0.5	0
17	Insights into the Function of the αâ€Helical Tail of Haemophilus influenzae 3â€Deoxyâ€Dâ€mannoâ€Octulosona 8â€Phosphate Phosphatase. FASEB Journal, 2010, 24, 835.3.	te 0.5	0
18	Mechanistic Insights into the Function of the αâ€Helical Tail in Haemophilus influenzae 3â€Deoxyâ€Dâ€mannoâ€Octulosonate 8â€Phosphate Phosphatase. FASEB Journal, 2010, 24, .	0.5	0

#	Article	IF	CITATIONS
19	WaaA of the Hyperthermophilic Bacterium Aquifex aeolicus Is a Monofunctional 3-Deoxy-d-manno-oct-2-ulosonic Acid Transferase Involved in Lipopolysaccharide Biosynthesis. Journal of Biological Chemistry, 2009, 284, 22248-22262.	3.4	33
20	The Tail of KdsC. Journal of Biological Chemistry, 2009, 284, 30594-30603.	3.4	19
21	Single amino acid substitutions in either YhjD or MsbA confer viability to 3â€deoxyâ€ <scp>d</scp> â€ <i>manno</i> â€octâ€2â€ulosonic acidâ€depleted <i>Escherichia coli</i> . Molecular Microbiology, 2008, 67, 633-648.	2.5	47
22	Identification and Characterization of Bacterial Cutinase. Journal of Biological Chemistry, 2008, 283, 25854-25862.	3.4	195
23	Modification of Lipopolysaccharide with Colanic Acid (M-antigen) Repeats in Escherichia coli*. Journal of Biological Chemistry, 2007, 282, 7790-7798.	3.4	84
24	Redefining the Requisite Lipopolysaccharide Structure in Escherichia coli. ACS Chemical Biology, 2006, 1, 33-42.	3.4	129
25	Characterization of Escherichia coliD-arabinose 5-phosphate isomerase encoded by kpsF: implications for group 2 capsule biosynthesis. Biochemical Journal, 2006, 395, 427-432.	3.7	28
26	New Insights into the Evolutionary Links Relating to the 3-Deoxy-D-arabino-heptulosonate 7-Phosphate Synthase Subfamilies. Journal of Biological Chemistry, 2006, 281, 4042-4048.	3.4	37
27	Bacillus subtilis 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase revisited: resolution of two long-standing enigmas. Biochemical Journal, 2005, 390, 583-590.	3.7	25
28	Identification of GutQ from Escherichia coli as a d -Arabinose 5-Phosphate Isomerase. Journal of Bacteriology, 2005, 187, 6936-6942.	2.2	41
29	The Use of (E)- and (Z)-Phosphoenol-3-fluoropyruvate as Mechanistic Probes Reveals Significant Differences between the Active Sites of KDO8P and DAHP Synthasesâ€. Biochemistry, 2005, 44, 7326-7335.	2.5	8
30	Unique biosynthesis of dehydroquinic acid?. Bioorganic Chemistry, 2004, 32, 309-315.	4.1	3
31	Conversion ofAquifex aeolicus3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase, a Metalloenzyme, into a Nonmetalloenzyme. Journal of the American Chemical Society, 2004, 126, 7448-7449.	13.7	17
32	Insights into the Mechanism of 3-Deoxy-D-arabino-heptulosonate 7-Phosphate Synthase (Phe) from Escherichia coli Using a Transient Kinetic Analysis. Journal of Biological Chemistry, 2004, 279, 45618-45625.	3.4	23
33	Crystal Structure of the Reaction Complex of 3-Deoxy- d - arabino -heptulosonate-7-phosphate Synthase from Thermotoga maritima Refines the Catalytic Mechanism and Indicates a New Mechanism of Allosteric Regulation. Journal of Molecular Biology, 2004, 341, 455-466.	4.2	65
34	Functional and biochemical characterization of a recombinant Arabidopsis thaliana 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Biochemical Journal, 2004, 381, 185-193.	3.7	17
35	Characterization of N-acetylneuraminic acid synthase isoenzyme 1 from Campylobacter jejuni. Biochemical Journal, 2004, 383, 83-89.	3.7	34
36	Mechanistic Insight into 3-Deoxy-d-manno-octulosonate-8-phosphate Synthase and 3-Deoxy-d-arabino-heptulosonate-7-phosphate Synthase Utilizing Phosphorylated Monosaccharide Analoguesâ€. Biochemistry, 2003, 42, 4843-4854.	2.5	21

#	Article	IF	CITATIONS
37	Escherichia coli Yrbl Is 3-Deoxy-d-manno-octulosonate 8-Phosphate Phosphatase. Journal of Biological Chemistry, 2003, 278, 18117-18123.	3.4	52
38	Thermotoga maritima 3-Deoxy-D-arabino-heptulosonate 7-Phosphate (DAHP) Synthase. Journal of Biological Chemistry, 2003, 278, 27525-27531.	3.4	30
39	Escherichia coli YrbH Is a D-Arabinose 5-Phosphate Isomerase. Journal of Biological Chemistry, 2003, 278, 32771-32777.	3.4	61
40	Structure-Based Design of Novel Inhibitors of 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase. Drug Design and Discovery, 2003, 18, 91-99.	0.3	12
41	Structure-Based Design of Novel Inhibitors of 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase. Drug Design and Discovery, 2003, 18, 91-99.	0.3	3
42	KpsF Is the Arabinose-5-phosphate Isomerase Required for 3-Deoxy-d-manno-octulosonic Acid Biosynthesis and for Both Lipooligosaccharide Assembly and Capsular Polysaccharide Expression in Neisseria meningitidis. Journal of Biological Chemistry, 2002, 277, 24103-24113.	3.4	56
43	Function of His185 in Aquifex aeolicus 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase. Journal of Molecular Biology, 2002, 324, 205-214.	4.2	15
44	Neisseria gonorrhoeae 3-Deoxy-d-arabino-heptulosonate 7-Phosphate Synthase Does Not Catalyze the Formation of the ribo Analogue. Organic Letters, 2001, 3, 21-24.	4.6	4
45	Structures of Aquifex aeolicus KDO8P Synthase in Complex with R5P and PEP, and with a Bisubstrate Inhibitor:  Role of Active Site Water in Catalysis,. Biochemistry, 2001, 40, 15676-15683.	2.5	39
46	Aquifex aeolicus 3-Deoxy-d-manno-2-Octulosonic Acid 8-Phosphate Synthase: A New Class of KDO 8-P Synthase?. Journal of Molecular Evolution, 2001, 52, 205-214.	1.8	49
47	Studies on 3-deoxy-d-manno-octulosonic acid 8-phosphate synthase using chorismate mutase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2795-2798.	2.2	Ο
48	Substrate and Metal Complexes of 3-Deoxy-d-manno-octulosonate-8-phosphate Synthase from Aquifex aeolicus at 1.9-Ã Resolution. Journal of Biological Chemistry, 2001, 276, 8393-8402.	3.4	62
49	Preliminary X-ray analysis of a new crystal form of theEscherichia coliKDO8P synthase. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 516-519.	2.5	12
50	Substrate Ambiguity of 3-Deoxy-d-manno-Octulosonate 8-Phosphate Synthase from Neisseria gonorrhoeae Revisited. Journal of Bacteriology, 2000, 182, 5005-5008.	2.2	13
51	A Single Point Mutation in 3-Deoxy-d-manno-octulosonate-8-phosphate Synthase Is Responsible for Temperature Sensitivity in a Mutant Strain of Salmonella typhimurium. Journal of Biological Chemistry, 2000, 275, 32141-32146.	3.4	11
52	A Metal Bridge between Two Enzyme Families. Journal of Biological Chemistry, 2000, 275, 22824-22831.	3.4	49
53	Histidine 268 in 3-Deoxy-d-arabino-heptulosonic Acid 7-Phosphate Synthase Plays the Same Role as Histidine 202 in 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase. Journal of Biological Chemistry, 2000, 275, 40258-40265.	3.4	6
54	Structure and Mechanism of 3-Deoxy-d-manno-octulosonate 8-Phosphate Synthase. Journal of Biological Chemistry, 2000, 275, 9476-9484.	3.4	91

#	Article	IF	CITATIONS
55	Identification of a Slow Tight-Binding Inhibitor of 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase. Journal of the American Chemical Society, 2000, 122, 9334-9335.	13.7	46
56	Probing the Stereochemistry ofE. coli3-Deoxy-d-arabino-heptulosonate 7-Phosphate Synthase (Phenylalanine-Sensitive)-Catalyzed Synthesis of KDO 8-P Analogues. Journal of Organic Chemistry, 2000, 65, 5891-5897.	3.2	17
57	Kinetic and mutagenic evidence for the role of histidine residues in the Lycopersicon esculentum 1-aminocyclopropane-1-carboxylic acid oxidase. The Protein Journal, 1999, 18, 55-68.	1.1	4
58	Identification of Essential Histidine Residues in 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase:Â Analysis by Chemical Modification with Diethyl Pyrocarbonate and Site-Directed Mutagenesisâ€. Biochemistry, 1999, 38, 14320-14329.	2.5	15
59	Functional and Biochemical Characterization of a Recombinant 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase from the Hyperthermophilic Bacterium Aquifex aeolicus. Biochemical and Biophysical Research Communications, 1999, 263, 346-351.	2.1	32
60	Probing the potential metal binding site inEscherichia coli3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (phenylalanine-sensitive). FEBS Letters, 1998, 441, 195-199.	2.8	10
61	Enzymatic Synthesis of 3-Deoxy-d-manno-octulosonate 8-Phosphate, 3-Deoxy-d-altro-octulosonate 8-Phosphate, 3,5-Dideoxy-d-gluco(manno)-octulosonate 8-Phosphate by 3-Deoxy-d-arabino-heptulosonate 7-Phosphate Synthase. Journal of the American Chemical Society, 1998. 120. 11027-11032.	13.7	49
62	Isolation and Identification of Twol-Azetidine-2-carboxylic Acid-Degrading Soil Microorganisms,EnterobacteragglomeransandEnterobacteramnigenus. Journal of Natural Products, 1998, 61, 207-211.	3.0	13
63	Essential Cysteines in 3-Deoxy-d-manno-octulosonic Acid 8-Phosphate Synthase fromEscherichia coli:Â Analysis by Chemical Modification and Site-Directed Mutagenesisâ€. Biochemistry, 1996, 35, 8942-8947.	2.5	23
64	Permeation of buprenorphine and its 3-alkyl-ester prodrugs through human skin. Pharmaceutical Research, 1996, 13, 1519-1523.	3.5	38
65	Conversion of the covalent intermediate 3-fluoro-2-phospho-lactyl-EPTase to 3-fluoro-2-phospholactyl-UDP-GlcNAc. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 133-138.	2.2	4
66	A solubility and related physicochemical property comparison of buprenorphine and its 3-alkyl esters. Pharmaceutical Research, 1995, 12, 1526-1529.	3.5	21
67	Overproduction and One-step Purification of Escherichia coli 3-Deoxy-D-manno-octulosonic Acid 8-Phosphate Synthase and Oxygen Transfer Studies during Catalysis Using Isotopic-shifted Heteronuclear NMR. Journal of Biological Chemistry, 1995, 270, 13698-13705.	3.4	72
68	Overproduction and One-Step Purification ofEscherichia coliUDP-N-Acetylglucosamine Enolpyruvyl Reductase. Protein Expression and Purification, 1995, 6, 757-762.	1.3	6
69	Stereochemistry of 3-deoxyoctulosonate 8-phosphate synthase. Biochemistry, 1993, 32, 12392-12397.	2.5	71
70	Synthesis of (E)- and (Z)-3-deuteriophosphoenolpyruvate. Journal of Organic Chemistry, 1990, 55, 758-760.	3.2	8
71	A practical large scale chemical synthesis of chiral glycines. Tetrahedron, 1988, 44, 5597-5604.	1.9	30
72	Assignment of the chemical shift values of N-trityl l-homoserine lactone. Tetrahedron Letters, 1988, 29, 4045-4048.	1.4	2

#	Article	IF	CITATIONS
73	Synthesis of stereospecific deuterium-labeled homoserines and homoserine lactones. Journal of Organic Chemistry, 1988, 53, 1900-1903.	3.2	36
74	Role of steric interactions in the delta opioid receptor selectivity of [<scp>d</scp> â€Pen ² , <scp>d</scp> â€Pen ⁵]enkephalin. International Journal of Peptide and Protein Research, 1988, 32, 1-8.	0.1	14
75	Synthesis and 1H-nmr of deuterium labeled D,L-homoserine lactone hydrochlorides. Journal of Labelled Compounds and Radiopharmaceuticals, 1987, 24, 369-376.	1.0	3
76	Alternate substrates and inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase. Bioorganic Chemistry, 1987, 15, 92-99.	4.1	8
77	An Asymmetric Strecker Synthesis of (R)-(+)-2-Methyl-3-Phenylalanine: An Efficient Preparation. Synthetic Communications, 1986, 16, 337-342.	2.1	31
78	The Proton NMR Assignment of 1-Aminocyclo-propane-1-carboxylic Acid. Spectroscopy Letters, 1986, 19, 1059-1069.	1.0	1
79	Enantioselective synthesis of (R)―and (S)â€2â€methylâ€[3,3,2â€2H3] alanines. International Journal of Peptide and Protein Research, 1986, 28, 579-585.	0.1	2
80	A convenient synthesis of -(5′-deoxy-5′-adenosyl)- (±) -2-methylhomocysteine. Tetrahedron Letters, 1985, 26, 1135-1136.	1.4	28
81	Preparation of S-(N6,N6-dimethyladenosyl)-l-methionine. Carbohydrate Research, 1985, 142, 123-126.	2.3	6
82	Synthesis of (4R)-D,L-[4-2H]- and (4S)-D,L-[42H]homoserine lactones. Journal of Organic Chemistry, 1985, 50, 2259-2263.	3.2	18
83	Synthesis of L-[4,4-2H2] and D,L-[3,3,4,4-2H4] methionine. Journal of Labelled Compounds and Radiopharmaceuticals, 1984, 21, 563-568.	1.0	4
84	Synthesis of deuterium-labeled 1-aminocyclopropane-1-carboxylic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1984, 21, 833-841.	1.0	10
85	Preparation of 1-deuterioaldehydes via tub use of diisobutylaluminum deuteride (DIBAL-D). Tetrahedron, 1984, 40, 3387-3392.	1.9	14
86	An improved synthesis of S-adenosylhomocysteine and related compounds. Journal of Organic Chemistry, 1984, 49, 1291-1293.	3.2	20
87	Stereochemical course of the transmethylation catalyzed by histamine N-methyltransferase. Archives of Biochemistry and Biophysics, 1984, 231, 253-256.	3.0	13
88	Stereochemical course of the biosynthesis of 1-aminocyclopropane-1-carboxylic acid. I. Role of the asymmetric sulfonium pole and the α-amino acid center. Biochemical and Biophysical Research Communications, 1984, 121, 181-187.	2.1	33
89	Stereochemical course of the methylation of the polygalacturonic acid carboxyl groups of pectin. Archives of Biochemistry and Biophysics, 1981, 207, 51-54.	3.0	10
90	Stereochemistry of indolmycin biosynthesis. Steric course of C- and N-methylation reactions. Journal of the American Chemical Society, 1980, 102, 6314-6318.	13.7	34

#	Article	IF	CITATIONS
91	Stereochemistry of Biological Reactions at Proprochiral Centers. Topics in Stereochemistry, 0, , 253-321.	2.0	17