Thomas S Teets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971029/publications.pdf

Version: 2024-02-01

81351 168829 5,923 83 31 76 h-index citations g-index papers 91 91 91 9703 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Photophysical Properties and Redox Potentials of Photosensitizers for Organic Photoredox Transformations. Synlett, 2022, 33, 1154-1179.	1.0	60
2	Effects of Ancillary Ligands on Deep Red to Near-Infrared Cyclometalated Iridium Complexes. ACS Organic & Inorganic Au, 2022, 2, 236-244.	1.9	13
3	Strategies for accessing photosensitizers with extreme redox potentials. Chemical Physics Reviews, 2022, 3, .	2.6	21
4	Platinum(II)-Substituted Phenylacetylide Complexes Supported by Acyclic Diaminocarbene Ligands. Inorganic Chemistry, 2022, 61, 8498-8508.	1.9	8
5	Trimetallic Iridium–Nickel–Iridium Bis(formazanate) Assemblies. Inorganic Chemistry, 2022, 61, 8788-8796.	1.9	3
6	Cyclometalated iridium-coumarin ratiometric oxygen sensors: improved signal resolution and tunable dynamic ranges. Chemical Science, 2022, 13, 8804-8812.	3.7	10
7	Organometallic Photosensitizers. , 2021, , .		2
8	î ² -Diketiminate-supported iridium photosensitizers with increased excited-state reducing power. Inorganic Chemistry Frontiers, 2021, 8, 3253-3265.	3.0	8
9	Photoredox catalysis on unactivated substrates with strongly reducing iridium photosensitizers. Chemical Science, 2021, 12, 4069-4078.	3.7	68
10	Coordination-Driven Self-Assembly of Cyclometalated Iridium Squares Using Linear Aromatic Diisocyanides. Inorganic Chemistry, 2021, 60, 5898-5907.	1.9	7
11	Cyano-Isocyanide Iridium(III) Complexes with Pure Blue Phosphorescence. Inorganic Chemistry, 2021, 60, 6391-6402.	1.9	15
12	Enhancing Charge Transfer in (BIMCA)Pt(II) Alkynyls through the Use of Substituted Boranes. Organometallics, 2021, 40, 1555-1559.	1.1	3
13	Red to near-infrared phosphorescent Ir(<scp>iii</scp>) complexes with electron-rich chelating ligands. Chemical Communications, 2021, 57, 1975-1988.	2.2	46
14	The diverse functions of isocyanides in phosphorescent metal complexes. Dalton Transactions, 2021, 50, 17851-17863.	1.6	21
15	Effects of the COVID-19 Pandemic on Student Engagement in a General Chemistry Course. Journal of Chemical Education, 2021, 98, 3633-3642.	1.1	25
16	Azo-triazolide bis-cyclometalated Ir(<scp>iii</scp>) complexes <i>via</i> cyclization of 3-cyanodiarylformazanate ligands. Dalton Transactions, 2020, 49, 3775-3785.	1.6	6
17	Blue-phosphorescent bis-cyclometalated iridium complexes with aryl isocyanide ancillary ligands. Polyhedron, 2020, 178, 114332.	1.0	12
18	Photocatalysis with Transition Metal Based Photosensitizers. Comments on Inorganic Chemistry, 2020, 40, 53-85.	3.0	39

#	Article	IF	CITATIONS
19	Bimetallic cyclometalated iridium complexes bridged by a BODIPY linker. Dalton Transactions, 2020, 49, 13854-13861.	1.6	3
20	Efficient near-infrared luminescence from bis-cyclometalated iridium(<scp>iii</scp>) complexes with rigid quinoline-derived ancillary ligands. Chemical Communications, 2020, 56, 8754-8757.	2.2	24
21	Roomâ€Temperature Phosphorescent Platinum(II) Alkynyls with Microsecond Lifetimes Bearing a Strongâ€Field Pincer Ligand. Chemistry - A European Journal, 2020, 26, 8417-8425.	1.7	12
22	Modifying the luminescent properties of a Cu(<scp>i</scp>) diphosphine complex using ligand-centered reactions in single crystals. Chemical Communications, 2020, 56, 9110-9113.	2.2	17
23	Dinuclear Complexes of Flexidentate Pyridineâ€Substituted Formazanate Ligands. Chemistry - A European Journal, 2020, 26, 11877-11886.	1.7	5
24	Efficient Deep Blue Platinum Acetylide Phosphors with Acyclic Diaminocarbene Ligands. Chemistry - A European Journal, 2020, 26, 16028-16035.	1.7	20
25	Improved deep-red phosphorescence in cyclometalated iridium complexes <i>via</i> ancillary ligand modification. Inorganic Chemistry Frontiers, 2020, 7, 1362-1373.	3.0	30
26	Synthesis and Characterization of Strong Cyclometalated Iridium Photoreductants for Application in Photocatalytic Aryl Bromide Hydrodebromination. ACS Catalysis, 2019, 9, 8646-8658.	5.5	49
27	Formazanate Complexes of Bis-Cyclometalated Iridium. Inorganic Chemistry, 2019, 58, 11672-11683.	1.9	10
28	Mixed-carbene cyclometalated iridium complexes with saturated blue luminescence. Chemical Science, 2019, 10, 6254-6260.	3.7	55
29	Cyclometalated iridium–BODIPY ratiometric O ₂ sensors. Chemical Science, 2019, 10, 5124-5132.	3.7	29
30	Effects of electron-rich ancillary ligands on green and yellow-emitting bis-cyclometalated iridium complexes. Journal of Coordination Chemistry, 2019, 72, 1238-1252.	0.8	3
31	Tracking the pyrolysis process of a 3-MeOsalophen-ligand based Co2 complex for promoted oxygen evolution reaction. Chemical Science, 2019, 10, 4560-4566.	3.7	30
32	Ancillary Ligand Effects on Redâ€Emitting Cyclometalated Iridium Complexes. Chemistry - A European Journal, 2019, 25, 6026-6037.	1.7	33
33	Facile Synthesis of Luminescent Ir–Pt–Ir Trimetallic Complexes. Chemistry - A European Journal, 2019, 25, 4833-4842.	1.7	6
34	Molecular Photosensitizers in Energy Research and Catalysis: Design Principles and Recent Developments. ACS Energy Letters, 2019, 4, 558-566.	8.8	50
35	Lewis Acid Modulation of <i>meso</i> â€Pyridyl BODIPY Chromophores. ChemPhotoChem, 2019, 3, 86-92.	1.5	7
36	Highly Luminescent Cyclometalated Iridium Complexes Generated by Nucleophilic Addition to Coordinated Isocyanides. Journal of the American Chemical Society, 2018, 140, 6353-6360.	6.6	69

#	Article	IF	Citations
37	Photoluminescence of Cyclometalated Iridium Complexes in Poly(methyl methacrylate) Films. Organometallics, 2018, 37, 3269-3277.	1.1	31
38	Light as a Catalytic Switch for Block Copolymer Architectures: Metal–Organic Insertion/Light Initiated Radical (MILRad) Polymerization. Macromolecules, 2018, 51, 7224-7232.	2.2	44
39	Homoleptic Platinum Azo-iminate Complexes via Hydrogenative Cleavage of Formazans. Inorganic Chemistry, 2018, 57, 9468-9477.	1.9	13
40	Highly Efficient Red-Emitting Bis-Cyclometalated Iridium Complexes. Journal of the American Chemical Society, 2018, 140, 10198-10207.	6.6	149
41	Spectroscopic and Electrochemical Properties of Electronically Modified Cycloplatinated Formazanate Complexes. Inorganic Chemistry, 2018, 57, 10906-10917.	1.9	20
42	Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands. Dalton Transactions, 2017, 46, 5008-5016.	1.6	23
43	Bis-Cyclometalated Iridium Complexes with Chelating Dicarbene Ancillary Ligands. Organometallics, 2017, 36, 2965-2972.	1.1	29
44	Room temperature transmetallation from tris(pentafluorophenyl)borane to cyclometallated iridium(<scp>iii</scp>). Dalton Transactions, 2017, 46, 11757-11767.	1.6	8
45	Potent Bis-Cyclometalated Iridium Photoreductants with \hat{l}^2 -Diketiminate Ancillary Ligands. Inorganic Chemistry, 2017, 56, 15295-15303.	1.9	34
46	Monometallic and Bimetallic Platinum Complexes with Fluorinated \hat{l}^2 -Diketiminate Ligands. Inorganic Chemistry, 2017, 56, 14326-14334.	1.9	5
47	Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. Chemical Reviews, 2016, 116, 8873-8911.	23.0	114
48	Fluorination of Cyclometalated Iridium \hat{l}^2 -Ketoiminate and \hat{l}^2 -Diketiminate Complexes: Extreme Redox Tuning and Ligand-Centered Excited States. Organometallics, 2016, 35, 2890-2899.	1.1	24
49	Postsynthetic Systematic Electronic Tuning of Organoplatinum Photosensitizers via Secondary Coordination Sphere Interactions. Organometallics, 2016, 35, 2267-2274.	1.1	17
50	Steric and Electronic Influence of Aryl Isocyanides on the Properties of Iridium(III) Cyclometalates. Inorganic Chemistry, 2016, 55, 2299-2308.	1.9	43
51	Heteroleptic Complexes of Cyclometalated Platinum with Triarylformazanate Ligands. Inorganic Chemistry, 2016, 55, 956-963.	1.9	33
52	Manipulating the Excited States of Cyclometalated Iridium Complexes with \hat{l}^2 -Ketoiminate and \hat{l}^2 -Diketiminate Ligands. Inorganic Chemistry, 2015, 54, 7122-7131.	1.9	62
53	Oxygen Reduction Mechanism of Monometallic Rhodium Hydride Complexes. Inorganic Chemistry, 2015, 54, 7335-7344.	1.9	9
54	Guanidine-Functionalized Rhenium Cyclopentadienyl Carbonyl Complexes: Synthesis and Cooperative Activation of Hâ€"H and Oâ€"H Bonds. Organometallics, 2014, 33, 4107-4117.	1,1	12

#	Article	IF	CITATIONS
55	A Thermodynamic Analysis of Rhenium(I)–Formyl C–H Bond Formation via Base-Assisted Heterolytic H ₂ Cleavage in the Secondary Coordination Sphere. Organometallics, 2013, 32, 5530-5545.	1.1	24
56	Photoâ€active Cobalt Cubane Model of an Oxygenâ€Evolving Catalyst. ChemSusChem, 2013, 6, 65-69.	3.6	31
57	Acidolyis and oxygen atom transfer reactivity of a diiridium hydroperoxo complex. Dalton Transactions, 2013, 42, 3521.	1.6	8
58	Halogen photoelimination from dirhodium phosphazane complexes via chloride-bridged intermediates. Chemical Science, 2013, 4, 2880.	3.7	35
59	Cyclometalated Iridium(III) Complexes with Deoxyribose Substituents. Chemistry - A European Journal, 2013, 19, 15924-15932.	1.7	27
60	Photo-ribonucleotide reductase \hat{I}^2 2 by selective cysteine labeling with a radical phototrigger. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 39-43.	3.3	53
61	Terpyridine–Porphyrin Heteroâ€Pacman Compounds. Chemistry - A European Journal, 2012, 18, 15449-15458.	1.7	16
62	Stability-enhanced hydrogen-evolving dirhodium photocatalysts through ligand modification. Chemical Communications, 2012, 48, 9474.	2.2	22
63	O ₂ Insertion into Group 9 Metal–Hydride Bonds: Evidence for Oxygen Activation through the Hydrogen-Atom-Abstraction Mechanism. Inorganic Chemistry, 2012, 51, 9499-9507.	1.9	18
64	Oxygen Reduction Reactions of Monometallic Rhodium Hydride Complexes. Inorganic Chemistry, 2012, 51, 7192-7201.	1.9	22
65	Constrained Digold(I) Diaryls: Syntheses, Crystal Structures, and Photophysics. Chemistry - A European Journal, 2012, 18, 2100-2112.	1.7	41
66	Heterobimetallic rhodium–gold halide and hydride complexes. Chemical Communications, 2011, 47, 1485-1487.	2.2	13
67	Oxygen Reduction to Water Mediated by a Dirhodium Hydrido-Chloride Complex. Journal of the American Chemical Society, 2011, 133, 8114-8117.	6.6	42
68	Xanthene-Modified and Hangman Iron Corroles. Inorganic Chemistry, 2011, 50, 1368-1377.	1.9	52
69	Photocatalytic hydrogen production. Chemical Communications, 2011, 47, 9268.	2.2	300
70	Hangman Corroles: Efficient Synthesis and Oxygen Reaction Chemistry. Journal of the American Chemical Society, 2011, 133, 131-140.	6.6	197
71	Mechanistic Studies of O ₂ Reduction Effected by Group 9 Bimetallic Hydride Complexes. Journal of the American Chemical Society, 2011, 133, 17796-17806.	6.6	29
72	Redox Chemistry, Acid Reactivity, and Hydrogenation Reactions of Two-Electron Mixed Valence Diiridium and Dirhodium Complexes. Inorganic Chemistry, 2011, 50, 5223-5233.	1.9	35

#	Article	IF	CITATIONS
73	Oxygen reduction reactivity of cobalt(ii) hangman porphyrins. Chemical Science, 2010, 1, 411.	3.7	225
74	Halogen Photoreductive Elimination from Metalâ^'Metal Bonded Iridium(II)â^'Gold(II) Heterobimetallic Complexes. Inorganic Chemistry, 2010, 49, 3035-3043.	1.9	40
75	Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds. Chemical Reviews, 2010, 110, 6474-6502.	23.0	2,676
76	Efficient Synthesis of Hangman Porphyrins. Organic Letters, 2010, 12, 1036-1039.	2.4	48
77	Three-Coordinate, Phosphine-Ligated Azadipyrromethene Complexes of Univalent Group 11 Metals. Inorganic Chemistry, 2009, 48, 8134-8144.	1.9	30
78	Halogen Photoreductive Elimination from Gold(III) Centers. Journal of the American Chemical Society, 2009, 131, 7411-7420.	6.6	109
79	Copper-Catalyzed Huisgen [3 + 2] Cycloaddition of Gold(I) Alkynyls with Benzyl Azide. Syntheses, Structures, and Optical Properties. Organometallics, 2009, 28, 6171-6182.	1.1	93
80	Mono- and Di-Gold(I) Naphthalenes and Pyrenes: Syntheses, Crystal Structures, and Photophysics. Organometallics, 2009, 28, 5669-5681.	1.1	85
81	Homoleptic, Four-Coordinate Azadipyrromethene Complexes of d ¹⁰ Zinc and Mercury. Inorganic Chemistry, 2008, 47, 2338-2346.	1.9	72
82	Proton storage in the periphery of zirconium(iv) porphyrinogen. Dalton Transactions, 2008, , 4549.	1.6	10
83	Luminescent, Three-Coordinate Azadipyrromethene Complexes of d ¹⁰ Copper, Silver, and Gold. Inorganic Chemistry, 2007, 46, 6218-6220.	1.9	76