List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5971016/publications.pdf Version: 2024-02-01

WEN-LICHEN

#	Article	IF	CITATIONS
1	Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.	6.0	429
2	Naturally Dried Graphene Aerogels with Superelasticity and Tunable Poisson's Ratio. Advanced Materials, 2016, 28, 9223-9230.	11.1	254
3	Prediction model of velocity field around circular cylinder over various Reynolds numbers by fusion convolutional neural networks based on pressure on the cylinder. Physics of Fluids, 2018, 30, .	1.6	202
4	Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity. Advanced Materials, 2016, 28, 2229-2237.	11.1	178
5	Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. Journal of Fluids and Structures, 2013, 42, 25-39.	1.5	174
6	Flow around a circular cylinder with slit. Experimental Thermal and Fluid Science, 2017, 82, 287-301.	1.5	110
7	An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Experiments in Fluids, 2014, 55, 1.	1.1	98
8	An experimental investigation on vortex induced vibration of a flexible inclined cable under a shear flow. Journal of Fluids and Structures, 2015, 54, 297-311.	1.5	94
9	Passive jet control of flow around a circular cylinder. Experiments in Fluids, 2015, 56, 1.	1.1	89
10	Investigation and control of vortex-induced vibration of twin box girders. Journal of Fluids and Structures, 2013, 39, 205-221.	1.5	85
11	A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration. Journal of Fluids and Structures, 2010, 26, 1195-1215.	1.5	73
12	Numerical study on the suppression of the vortex-induced vibration of an elastically mounted cylinder by a traveling wave wall. Journal of Fluids and Structures, 2014, 44, 145-165.	1.5	60
13	An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 132, 27-36.	1.7	55
14	Active control of circular cylinder flow with windward suction and leeward blowing. Experiments in Fluids, 2019, 60, 1.	1.1	51
15	Suppression of vortex-induced vibration of a circular cylinder by a passive-jet flow control. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 199, 104119.	1.7	51
16	Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach. Journal of Fluids and Structures, 2021, 105, 103348.	1.5	51
17	Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder. Journal of Fluids and Structures, 2018, 77, 115-133.	1.5	49
18	Multi-modal vortex- and rain–wind- induced vibrations of an inclined flexible cable. Mechanical Systems and Signal Processing, 2019, 118, 245-258.	4.4	49

#	Article	IF	CITATIONS
19	Experimental study on the dynamic responses of a freestanding bridge tower subjected to coupled actions of wind and wave loads. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 159, 36-47.	1.7	48
20	Flow around a slotted circular cylinder at various angles of attack. Experiments in Fluids, 2017, 58, 1.	1.1	48
21	Active flow control of the dynamic wake behind a square cylinder using combined jets at the front and rear stagnation points. Physics of Fluids, 2021, 33, .	1.6	47
22	An experimental study on the characteristics of wind-driven surface water film flows by using a multi-transducer ultrasonic pulse-echo technique. Physics of Fluids, 2017, 29, .	1.6	46
23	An experimental study on the aerodynamic performance degradation of a UAS propeller model induced by ice accretion process. Experimental Thermal and Fluid Science, 2019, 102, 101-112.	1.5	46
24	An ultrasonic transmission thickness measurement system for study of water rivulets characteristics of stay cables suffering from wind–rain-induced vibration. Sensors and Actuators A: Physical, 2010, 159, 12-23.	2.0	45
25	Numerical investigation of steady suction control of flow around a circular cylinder. Journal of Fluids and Structures, 2015, 59, 22-36.	1.5	44
26	Control of circular cylinder flow via bilateral splitter plates. Physics of Fluids, 2019, 31, .	1.6	39
27	Multi-mode responses, rivulet dynamics, flow structures and mechanism of rain-wind induced vibrations of a flexible cable. Journal of Fluids and Structures, 2018, 82, 154-172.	1.5	35
28	Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements. Experiments in Fluids, 2020, 61, 1.	1.1	34
29	Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder. Journal of Fluids and Structures, 2017, 70, 145-161.	1.5	32
30	Numerical simulation and prediction of spatial wind field under complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 180, 49-65.	1.7	32
31	Passive Jet Flow Control Method for Suppressing Unsteady Vortex Shedding from a Circular Cylinder. Journal of Aerospace Engineering, 2017, 30, .	0.8	29
32	Review of active control of circular cylinder flow. Ocean Engineering, 2022, 258, 111840.	1.9	29
33	Flow control of the wake vortex street of a circular cylinder by using a traveling wave wall at low Reynolds number. Computers and Fluids, 2017, 145, 52-67.	1.3	28
34	Flow characteristics of a fixed circular cylinder with an upstream splitter plate: On the plate-length sensitivity. Experimental Thermal and Fluid Science, 2020, 117, 110135.	1.5	27
35	Self-issuing jets for suppression of vortex-induced vibration of a single box girder. Journal of Fluids and Structures, 2019, 86, 213-235.	1.5	26
36	Wake-flow-induced vibrations of vertical hangers behind the tower of a long-span suspension bridge. Engineering Structures, 2018, 169, 188-200.	2.6	24

#	Article	IF	CITATIONS
37	A Two-Stage Seismic Damage Assessment Method for Small, Dense, and Imbalanced Buildings in Remote Sensing Images. Remote Sensing, 2022, 14, 1012.	1.8	24
38	Experimental investigation of aerodynamic forces and flow structures of bionic cylinders based on harbor seal vibrissa. Experimental Thermal and Fluid Science, 2018, 99, 169-180.	1.5	23
39	An experimental study on the dynamic ice accretion processes on bridge cables with different surface modifications. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190, 218-229.	1.7	23
40	Influence of Dynamic Properties and Position of Rivulet on Rain–Wind-Induced Vibration of Stay Cables. Journal of Bridge Engineering, 2013, 18, 1021-1031.	1.4	22
41	Numerical Simulation of Vortex-Induced Vibrations of Inclined Cables under Different Wind Profiles. Journal of Bridge Engineering, 2013, 18, 42-53.	1.4	20
42	Effects of steady wake-jets on subcritical cylinder flow. Experimental Thermal and Fluid Science, 2019, 102, 575-588.	1.5	20
43	A numerical investigation of Reynolds number sensitivity of flow characteristics around a twin-box girder. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172, 298-316.	1.7	19
44	Experimental Investigation on Vortex-Induced Vibration Mitigation of Stay Cables in Long-Span Bridges Equipped with Damped Crossties. Journal of Aerospace Engineering, 2019, 32, .	0.8	19
45	A Field Investigation on Vortex-Induced Vibrations of Stay Cables in a Cable-Stayed Bridge. Applied Sciences (Switzerland), 2019, 9, 4556.	1.3	18
46	Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method. Journal of Fluids and Structures, 2020, 96, 103017.	1.5	18
47	Attenuation of vortex street by suction through the structured porous surface. Physics of Fluids, 2021, 33, .	1.6	18
48	Dynamic wake of a square cylinder controlled with steady jet positioned at the rear stagnation point. Ocean Engineering, 2021, 233, 109157.	1.9	17
49	Separation Control on a Bridge Box Girder Using a Bypass Passive Jet Flow. Applied Sciences (Switzerland), 2017, 7, 501.	1.3	16
50	Computer vision-based recognition of rainwater rivulet morphology evolution during rain–wind-induced vibration of a 3D aeroelastic stay cable. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 172, 367-378.	1.7	14
51	Passive suction jet control of flow regime around a rectangular column with a low side ratio. Experimental Thermal and Fluid Science, 2019, 109, 109815.	1.5	13
52	Active control of flow structure and unsteady aerodynamic force of box girder with leading-edge suction and trailing-edge jet. Experimental Thermal and Fluid Science, 2021, 120, 110244.	1.5	13
53	Influence of porous media coatings on flow characteristics and vortex-induced vibration of circular cylinders. Journal of Fluids and Structures, 2021, 106, 103365.	1.5	13
54	Experimental investigation on a freestanding bridge tower under wind and wave loads. Structural Engineering and Mechanics, 2016, 57, 951-968.	1.0	13

#	Article	IF	CITATIONS
55	On the coupling mechanism of rain–wind two-phase flow induced cable vibration: A wake-dynamics perspective. Physics of Fluids, 2021, 33, .	1.6	13
56	Characteristics of forced flow past a square cylinder with steady suction at leading-edge corners. Physics of Fluids, 2022, 34, .	1.6	13
57	Multi-scale simulation of rainwater morphology evolution on a cylinder subjected to wind. Computers and Fluids, 2015, 123, 112-121.	1.3	12
58	Wake-induced vibration of a suspender cable in the rear of a bridge tower. Journal of Fluids and Structures, 2020, 99, 103166.	1.5	10
59	Modification of subcritical cylinder flow with an upstream rod. Physics of Fluids, 2022, 34, .	1.6	10
60	Dynamics of the forced wake of a square cylinder with embedded flapping jets. Applied Ocean Research, 2022, 120, 103078.	1.8	10
61	Structured porous surface for drag reduction and wake attenuation of cylinder flow. Ocean Engineering, 2022, 247, 110444.	1.9	10
62	Wake-vortex evolution behind a fixed circular cylinder with symmetric jets. Experimental Thermal and Fluid Science, 2022, 135, 110629.	1.5	10
63	Large eddy simulation of passive jet flow control on the wake of flow around a circular cylinder. Computers and Fluids, 2020, 196, 104342.	1.3	9
64	Passive aerodynamic control of a single-box girder using self-issuing jets. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208, 104443.	1.7	9
65	Ludwig Prandtl's envisage: elimination of von KÃįrmÃįn vortex street with boundary-layer suction. Journal of Visualization, 2021, 24, 237-250.	1.1	9
66	Self-Suction-and-Jet Control in Flow Regime and Unsteady Force for a Single Box Girder. Journal of Bridge Engineering, 2019, 24, 04019072.	1.4	8
67	Self-similarity in the wake of a semi-submersible offshore wind turbine considering the interaction with the wake of supporting platform. Renewable Energy, 2020, 156, 328-341.	4.3	8
68	A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver. Energies, 2019, 12, 643.	1.6	7
69	Effects of leading-edge separation on the vortex shedding and aerodynamic characteristics of an elongated bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206, 104356.	1.7	7
70	Active Wake Control of Flow Past a Circular Cylinder with Slot Jet. Journal of Aerospace Engineering, 2021, 34, .	0.8	7
71	Investigation of a hybrid approach combining experimental tests and numerical simulations to study vortex-induced vibration in a circular cylinder. Journal of Sound and Vibration, 2012, 331, 1164-1182.	2.1	6
72	Suppression of vortex-induced vibration of a box girder using active suction-jet slit. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 216, 104713.	1.7	6

#	Article	IF	CITATIONS
73	A coupled model for vortex induced vibration of a circular cylinder with and without passive-jet flow control. Journal of Fluids and Structures, 2022, 110, 103541.	1.5	6
74	Wake stabilization behind a cylinder by secondary flow over the leeward surface. Physics of Fluids, 2022, 34, 055110.	1.6	6
75	Study on Strain-Sense Property of TiNi and TiNiCu Shape Memory Alloys. Advances in Structural Engineering, 2005, 8, 637-643.	1.2	5
76	Semiactive variable stiffness control for parametric vibration of cables. Earthquake Engineering and Engineering Vibration, 2006, 5, 215-222.	1.1	5
77	Lift-Generation and Moving-Wall Flow Control Over a Low Aspect Ratio Airfoil. Journal of Fluids Engineering, Transactions of the ASME, 2018, 140, .	0.8	5
78	Effect of suction control on the aerodynamic characteristics of an elliptical cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 202, 104202.	1.7	5
79	Fluid Dynamics Behind a Circular Cylinder Embedded with an Active Flapping Jet Actuator. Journal of Fluids Engineering, Transactions of the ASME, 2021, , .	0.8	5
80	Experimental investigation on the impingement of synthetic jet vortex rings on a spherical wall. Physical Review Fluids, 2022, 7, .	1.0	4
81	Acoustic Emission Characters of Glass Fibre Reinforced Polymer Stay Cable. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1357-1363.	0.4	3
82	A Feasibility Study to Identify Ice Types by Measuring Attenuation of Ultrasonic Waves for Aircraft Icing Detection. , 2014, , .		3
83	Development of an ultrasonic pulse-echo (UPE) technique for aircraft icing studies. AIP Conference Proceedings, 2014, , .	0.3	3
84	Self-Suction and Self-Jet Control on Wind Loads and Turbulent Flow Structures over a Circular Cylinder. Journal of Aerospace Engineering, 2019, 32, .	0.8	3
85	Role of dynamic water rivulets in the excitation of rain–wind-induced cable vibration: A critical review. Advances in Structural Engineering, 2021, 24, 3627-3644.	1.2	3
86	Numerical simulation of passive-suction-jet control of flow over two side-by-side circular cylinders. Ocean Engineering, 2022, 257, 111624.	1.9	3
87	Vortex-induced vibration of stay cable under profile velocity using CFD numerical simulation method. Frontiers of Architecture and Civil Engineering in China, 2009, 3, 357-363.	0.4	2
88	A Passive Method to Control the Wake Flow behind a Circular Cylinder. , 2017, , .		2
89	Flow control on the vortex-induced vibration of a circular cylinder using a traveling wave wall method. Advances in Structural Engineering, 2018, 21, 1664-1675.	1.2	2
90	Effects of leading-edge separation on the vortex-induced vibration of an elongated bluff body. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 209, 104500.	1.7	2

#	Article	IF	CITATIONS
91	Experimental Investigation and Validation on Suppressing the Unsteady Aerodynamic Force and Flow Structure of Single Box Girder by Trailing Edge Jets. Applied Sciences (Switzerland), 2022, 12, 967.	1.3	2
92	Real-time monitoring of bridge scouring using ultrasonic sensing technology. , 2012, , .		1
93	Analysis of load characteristics and responses of low-rise building under tornado. Procedia Engineering, 2017, 210, 165-172.	1.2	1
94	Passive Jet Approach to Control the Flow over a Circular Cylinder. Journal of Aerospace Engineering, 2020, 33, .	0.8	1
95	Numerical simulation and experiment investigation on passive-suction-jet control of wind effect of two tandem cable models. Advances in Structural Engineering, 2021, 24, 897-913.	1.2	1
96	Numerical Simulation Study on a Passive Jet Flow Control Method to Suppress Unsteady Vortex Shedding from a Circular Cylinder. Lecture Notes in Mechanical Engineering, 2016, , 441-446.	0.3	1
97	An Experimental Investigation of Passive Jet Control Method on Bridge Tower Wake. Applied Sciences (Switzerland), 2022, 12, 4691.	1.3	1
98	Suppression of Unsteady Vortex Shedding From a Circular Cylinder by Using a Passive Jet Flow Control Method. , 2014, , .		0
99	New Advances in Fluid–Structure Interaction. Applied Sciences (Switzerland), 2022, 12, 5366.	1.3	О