
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5970971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhaled Particulate Matter Causes Expression of Nuclear Factor (NF)- κ B–Related Genes and Oxidant-Dependent NF- κ B Activation <i>In Vitro</i> . American Journal of Respiratory Cell and Molecular Biology, 2000, 23, 182-187.	2.9	232
2	Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmospheric Environment, 2003, 37, 4097-4108.	4.1	190
3	Physicochemical characterisation of diesel exhaust particles: Factors for assessing biological activity. Atmospheric Environment, 1999, 33, 1599-1614.	4.1	174
4	COMBUSTIONâ€ÐERIVED NANOPARTICLES: MECHANISMS OF PULMONARY TOXICITY. Clinical and Experimental Pharmacology and Physiology, 2007, 34, 1044-1050.	1.9	119
5	Human primary bronchial lung cell constructs: The new respiratory models. Toxicology, 2010, 278, 311-318.	4.2	116
6	A new look at inhalable metalliferous airborne particles on rail subway platforms. Science of the Total Environment, 2015, 505, 367-375.	8.0	116
7	Particulate Matter from Both Heavy Fuel Oil and Diesel Fuel Shipping Emissions Show Strong Biological Effects on Human Lung Cells at Realistic and Comparable In Vitro Exposure Conditions. PLoS ONE, 2015, 10, e0126536.	2.5	111
8	An in vitro approach to assess the toxicity of inhaled tobacco smoke components: Nicotine, cadmium, formaldehyde and urethane. Toxicology, 2008, 244, 66-76.	4.2	85
9	The response of lung epithelium to well characterised fine particles. Life Sciences, 1998, 62, 1789-1799.	4.3	76
10	A multidisciplinary approach to characterise exposure risk and toxicological effects of PM10 and PM2.5 samples in urban environments. Ecotoxicology and Environmental Safety, 2012, 78, 327-335.	6.0	75
11	Mechanisms of Asbestos-induced Nitric Oxide Production by Rat Alveolar Macrophages in Inhalation and in vitro Models 11Supported by grants from NHLBI (RO1 HL39469) and NIEHS (RO1 03878) Free Radical Biology and Medicine, 1998, 24, 778-788.	2.9	72
12	Pathway-based predictive approaches for non-animal assessment of acute inhalation toxicity. Toxicology in Vitro, 2018, 52, 131-145.	2.4	66
13	Bioreactivity of leachate from municipal solid waste landfills — assessment of toxicity. Science of the Total Environment, 2007, 384, 171-181.	8.0	65
14	The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations. Environmental Pollution, 2011, 159, 3324-3333.	7.5	62
15	Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: An international workshop report. Toxicology in Vitro, 2018, 48, 53-70.	2.4	62
16	Soot-driven reactive oxygen species formation from incense burning. Science of the Total Environment, 2011, 409, 4781-4787.	8.0	58
17	Tissueâ€Specific Stem Cell Differentiation in an in vitro Airway Model. Macromolecular Bioscience, 2011, 11, 1467-1477.	4.1	58
18	Comparative Proliferative and Histopathologic Changes in Rat Lungs after Inhalation of Chrysotile or Crocidolite Asbestos. Toxicology and Applied Pharmacology, 1996, 137, 67-74.	2.8	55

#	Article	IF	CITATIONS
19	Characterisation of airborne particles collected within and proximal to an opencast coalmine: South Wales, U.K. Environmental Monitoring and Assessment, 2002, 75, 293-312.	2.7	52
20	Modeling the interactions of particulates with epithelial lining fluid antioxidants. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L719-L726.	2.9	47
21	Bioreactivity of particulate matter in Beijing air: Results from plasmid DNA assay. Science of the Total Environment, 2006, 367, 261-272.	8.0	47
22	Seasonal variation of particle-induced oxidative potential of airborne particulate matter in Beijing. Science of the Total Environment, 2017, 579, 1152-1160.	8.0	47
23	Airborne microplastics: A review of current perspectives and environmental implications. Journal of Cleaner Production, 2022, 347, 131048.	9.3	46
24	Characterization and bioreactivity of respirable airborne particles from a municipal landfill. Biomarkers, 2009, 14, 49-53.	1.9	45
25	Associations between particle physicochemical characteristics and oxidative capacity: An indoor PM10 study in Beijing, China. Atmospheric Environment, 2007, 41, 5316-5326.	4.1	42
26	Ultrafine Airborne Particles Cause Increases in Protooncogene Expression and Proliferation in Alveolar Epithelial Cells. Toxicology and Applied Pharmacology, 2002, 179, 98-104.	2.8	41
27	Combustion particles emitted during church services: Implications for human respiratory health. Environment International, 2012, 40, 137-142.	10.0	41
28	The spatial and temporal variations in PM10 mass from six UK homes. Science of the Total Environment, 2004, 324, 41-53.	8.0	37
29	Investigation into the oxidative potential generated by the formation of particulate matter from incense combustion. Journal of Hazardous Materials, 2013, 244-245, 142-150.	12.4	37
30	Characterisation of airborne particles and associated organic components produced from incense burning. Analytical and Bioanalytical Chemistry, 2011, 401, 3095-3102.	3.7	35
31	The oxidative potential of PM 10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove. Atmospheric Environment, 2016, 127, 372-381.	4.1	34
32	The physicochemical characterisation of microscopic airborne particles in south Wales: A review of the locations and methodologies. Science of the Total Environment, 2006, 360, 43-59.	8.0	33
33	The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geoscience Frontiers, 2021, 12, 101189.	8.4	33
34	Killer smog of London, 50 years on: particle properties and oxidative capacity. Science of the Total Environment, 2004, 334-335, 435-445.	8.0	32
35	The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. Science of the Total Environment, 2021, 767, 144391.	8.0	31
36	The chemical composition and toxicological effects of fine particulate matter (PM2.5) emitted from different cooking styles. Environmental Pollution, 2021, 288, 117754.	7.5	30

#	Article	IF	CITATIONS
37	Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunnan Province, China. Chemosphere, 2020, 256, 127058.	8.2	29
38	Pulmonary epithelial response in the rat lung to instilled Montserrat respirable dusts and their major mineral components. Occupational and Environmental Medicine, 2002, 59, 466-472.	2.8	27
39	INFLAMMATION, EDEMA, AND PERIPHERAL BLOOD CHANGES IN LUNG-COMPROMISED RATS AFTER INSTILLATION WITH COMBUSTION-DERIVED AND MANUFACTURED NANOPARTICLES. Experimental Lung Research, 2006, 32, 363-378.	1.2	27
40	Cytotoxic effects of incense particles in relation to oxidative stress, the cell cycle and F-actin assembly. Toxicology Letters, 2013, 220, 229-237.	0.8	25
41	Bioreactivity of municipal solid waste landfill leachates—Hormesis and DNA damage. Water Research, 2008, 42, 2177-2183.	11.3	23
42	Genomic biomarkers of pulmonary exposure to tobacco smoke components. Pharmacogenetics and Genomics, 2008, 18, 853-860.	1.5	23
43	A review of atmospheric individual particle analyses: Methodologies and applications in environmental research. Gondwana Research, 2022, 110, 347-369.	6.0	23
44	Microscopy and chemistry of particles collected on TEOM filters: Swansea, south Wales, 1998–1999. Atmospheric Environment, 2001, 35, 3573-3583.	4.1	22
45	Proteomic profiling of human respiratory epithelia by iTRAQ reveals biomarkers of exposure and harm by tobacco smoke components. Biomarkers, 2011, 16, 567-576.	1.9	21
46	Filter-well Technology for Advanced Three-dimensional Cell Culture: Perspectives for Respiratory Research. ATLA Alternatives To Laboratory Animals, 2010, 38, 49-65.	1.0	20
47	Characterization of the interactions between protein and carbon black. Journal of Hazardous Materials, 2014, 264, 127-135.	12.4	19
48	Effects of chronic salt stress on the ultrastructure ofDunaliella bioculata(Chlorophyta,) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	50 302 Td (Vo
49	A toxicological study of inhalable particulates in an industrial region of Lanzhou City, northwestern China: Results from plasmid scission assay. Aeolian Research, 2014, 14, 25-34.	2.7	16
50	The bioreactivity of the sub-10μm component of volcanic ash: Soufrière Hills volcano, Montserrat. Journal of Hazardous Materials, 2011, 194, 128-134.	12.4	15
51	Physicochemical and biological characterization of single-walled and double-walled carbon nanotubes in biological media. Journal of Hazardous Materials, 2014, 280, 216-225.	12.4	15
52	Oxidative potential and water-soluble heavy metals of size-segregated airborne particles in haze and non-haze episodes: Impact of the "Comprehensive Action Plan―in China. Science of the Total Environment, 2022, 814, 152774.	8.0	15
53	Airborne Particles in Swansea, UK: Their Collection and Characterization. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 355-367.	2.3	14

54Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area.8.41454Geoscience Frontiers, 2022, 13, 101176.14

#	Article	IF	CITATIONS
55	Toxicity of airborne dust generated by opencast coal mining. Mineralogical Magazine, 2003, 67, 141-152.	1.4	13
56	The respiratory toxicity of airborne volcanic ash from the Soufrière Hills volcano, Montserrat. Mineralogical Magazine, 2004, 68, 47-60.	1.4	13
5 7	The geochemistry and bioreactivity of fly-ash from coal-burning power stations. Biomarkers, 2009, 14, 45-48.	1.9	13
58	Alternatives for Lung Research: Stuck between a Rat and a Hard Place. ATLA Alternatives To Laboratory Animals, 2011, 39, 121-130.	1.0	13
59	The effects of particle-induced oxidative damage from exposure to airborne fine particulate matter components in the vicinity of landfill sites on Hong Kong. Chemosphere, 2019, 230, 578-586.	8.2	12
60	Mineral dust in urban air: Beijing, China. Mineralogical Magazine, 2003, 67, 173-182.	1.4	11
61	The Physicochemistry and Toxicology of CFA Particles. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010, 73, 341-354.	2.3	11
62	Linking particle number concentration (PNC), meteorology and traffic variables in a UK street canyon. Atmospheric Research, 2014, 147-148, 133-144.	4.1	11
63	Gene and protein responses of human lung tissue explants exposed to ambient particulate matter of different sizes. Inhalation Toxicology, 2012, 24, 966-975.	1.6	10
64	Human airway construct model is suitable for studying transcriptome changes associated with indoor air particulate matter toxicity. Indoor Air, 2020, 30, 433-444.	4.3	10
65	Human lung tissue engineering: a critical tool for safer medicines. Cell and Tissue Banking, 2011, 12, 11-13.	1.1	9
66	Medical Waste Tissues — Breathing Life back into Respiratory Research. ATLA Alternatives To Laboratory Animals, 2013, 41, 429-434.	1.0	8
67	Prolonged systemic inflammation and damage to the vascular endothelium following intratracheal instillation of air pollution nanoparticles in rats. Clinical Hemorheology and Microcirculation, 2019, 72, 1-10.	1.7	7
68	Iron-Rich Magnetic Coal Fly Ash Particles Induce Apoptosis in Human Bronchial Cells. Applied Sciences (Switzerland), 2020, 10, 8368.	2.5	7
69	A Normal and Biotransforming Model of the Human Bronchial Epithelium for the Toxicity Testing of Aerosols and Solubilised Substances. ATLA Alternatives To Laboratory Animals, 2014, 42, 377-381.	1.0	6
70	Oxidative capacity and hemolytic activity of settled dust from moistureâ€damaged schools. Indoor Air, 2019, 29, 299-307.	4.3	6
71	Atmospheric iron particles in PM2.5 from a subway station, Beijing, China. Atmospheric Environment, 2022, 283, 119175.	4.1	6
72	Resolution of the mediators of in vitro oxidative reactivity in size-segregated fractions that may be masked in the urban PM10 cocktail. Science of the Total Environment, 2014, 485-486, 588-595.	8.0	5

1.0

0

#	Article	IF	CITATIONS
73	The Determination of Volume of Dunaliella Cells by Transmission Electron Microscopy and Image Analysis. Annals of Botany, 1994, 73, 481-491.	2.9	4
74	Increased monocyte actin polymerization in rat blood after intratracheal instillation of air pollution particles. Biorheology, 2014, 51, 329-338.	0.4	4
75	Characterization of pulmonary protein profiles in response to zinc oxide nanoparticles in mice: a 24-hour and 28-day follow-up study. International Journal of Nanomedicine, 2015, 10, 4705.	6.7	4
76	CHARACTERISATION OF AIRBORNE PARTICULATE MATTER AND RELATED MECHANISMS OF TOXICITY: AN EXPERIMENTAL APPROACH. Air Pollution Reviews, 2006, , 69-110.	0.1	3
77	Anln VitroVersusIn VivoToxicogenomic Investigation of Prenatal Exposures to Tobacco Smoke. Applied in Vitro Toxicology, 2018, 4, 379-388.	1.1	3
78	Analysis of Chemical and Biological Properties. , 0, , 105-140.		2
79	Safety of medicine and the use of animals in research. Lancet, The, 2011, 378, e2.	13.7	2
80	Chapter 4. Modelling the Human Respiratory System: Approaches for in Vitro Safety Testing and Drug Discovery. Human-Derived Lung Models; The Future of Toxicology Safety Assessment. RSC Drug Discovery Series, 2014, , 66-87.	0.3	2
81	A New Look at the Purported Health Benefits of Commercial and Natural Clays. Biomolecules, 2021, 11, 58.	4.0	2
82	BRITISH ASSOCIATION FOR LUNG RESEARCH—SUMMER 2005 MEETING SUMMARY. Experimental Lung Research, 2006, 32, 119-149.	1.2	1
83	A comment on SillanpÃऋt al. (2003) Field and laboratory tests of a high volume cascade impactor. Journal of Aerosol Science, 34, 485–500 Journal of Aerosol Science, 2007, 38, 136-138.	3.8	1
84	A novel application for Cocoacrisp protein as a biomarker for experimental pulmonary fibrosis. Biomarkers, 2009, 14, 366-371.	1.9	1
85	The 2012 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2013, 41, 419-422.	1.0	1
86	The 2015 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2016, 44, 401-406.	1.0	1
87	The Determination of Axis Lengths ofDunaliella from the Image Analysis of TEM Sections through Randomly Orientated Cells. Biometrical Journal, 1996, 38, 907-920.	1.0	0
88	Effects of chronic salt stress on the ultrastructure of Dunaliella bioculata (Chlorophyta,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 Tf	f 50,142 Td (
89	Gene Expression Profiling Following Instillation of Diesel Exhaust Particles in Rat Lung: A First Study. Microscopy and Microanalysis, 2000. 6, 910-911.	0.4	0

The 2013 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2014, 42, 345-349.

#	Article	IF	CITATIONS
91	The 2014 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2015, 43, 293-297.	1.0	Ο
92	The 2016 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2017, 45, 221-226.	1.0	0
93	The 2017 Lush Prize Awards. ATLA Alternatives To Laboratory Animals, 2018, 46, 187-191.	1.0	Ο
94	Enhanced Transcriptomic Resilience following Increased Alternative Splicing and Differential Isoform Production between Air Pollution Conurbations. Atmosphere, 2021, 12, 959.	2.3	0
95	Toxicological responses of normal human bronchial epithelium (NHBE) model exposed to settled dust samples from moisture damaged and reference schools. , 2015, , .		0