Kyu Yong Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5970741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Spatial Distributions of Active Sites in a Silica-Supported Metallocene Catalyst on Particle Fragmentation and Reaction in Gas-Phase Ethylene Polymerization. Macromolecules, 2022, 55, 2444-2455.	4.8	4
2	High pressure semibatch emulsion and miniemulsion copolymerization of vinyl acetate and ethylene. Journal of Applied Polymer Science, 2021, 138, 49784.	2.6	2
3	Mathematical Modeling of Free Radical Solution Terpolymerization Reactions in a Batch and Continuous Flow Stirred Tank Reactors. Macromolecular Theory and Simulations, 2021, 30, 2000094.	1.4	3
4	Adverse effect of polystyrene microplastics (PS-MPs) on tube formation and viability of human umbilical vein endothelial cells. Food and Chemical Toxicology, 2021, 154, 112356.	3.6	51
5	Effect of Intraparticle Mass Transfer on the Catalytic Site Formation in the Preparation of Silicaâ€Supported Metallocene Catalysts. Macromolecular Reaction Engineering, 2021, 15, 2100039.	1.5	2
6	Geometrically Constrained Polymerization of Styrene Over Heterogeneous Catalyst Layer in Silica Nanotube Reactors. Polymer Engineering and Science, 2020, 60, 700-709.	3.1	1
7	Liquid–Liquid Equilibrium Measurements for the Ternary System of Water/2,3-Butanediol/4-Methyl-2-pentanol at Various Temperatures. Journal of Chemical & Engineering Data, 2019, 64, 3882-3888.	1.9	11
8	Liquid-liquid equilibria for water+2,3-butanediol+1-pentanol ternary system at different temperatures of 298.2, 308.2, and 318.2 K. Korean Journal of Chemical Engineering, 2018, 35, 1328-1334.	2.7	12
9	Mathematical modeling and analysis of an interfacial polycarbonate polymerization in a continuous multizone tubular reactor. Polymer Engineering and Science, 2018, 58, 438-446.	3.1	2
10	Morphological Study of Nascent Growth of αâ€Olefin Polymers on Spatially Unconstrained Silica Surfaces. Macromolecular Reaction Engineering, 2018, 12, 1800009.	1.5	0
11	Morphologies of microparticles of partially neutralized sodium polyacrylate by inverse suspension polymerization. Polymer Engineering and Science, 2018, 58, 1564-1574.	3.1	6
12	Ethylene Polymerization over Metallocene Catalysts Supported on Highly Fibrous Silica Nanoparticles. Macromolecular Reaction Engineering, 2017, 11, 1600027.	1.5	7
13	Heterogeneous Catalytic Polymerization of Ethylene in Microtubular Reactor Systems. Chemical Engineering and Technology, 2016, 39, 293-300.	1.5	4
14	Growth of Polyethylene Nanofibrils Over <i>rac</i> â€Et(Indenyl) ₂ ZrCl ₂ /MAO Catalyst Supported on Silica Nanotubes. Macromolecular Reaction Engineering, 2015, 9, 570-578.	1.5	4
15	Structure and properties of ultraâ€high molecular weight bisphenol a polycarbonate synthesized by solidâ€state polymerization in amorphous microlayers. Journal of Applied Polymer Science, 2015, 132, .	2.6	11
16	Mathematical Modeling of Polymer Particles with a Pomegranateâ€ <scp>L</scp> ike Internal Structure Via Microâ€ <scp>D</scp> ispersive Polymerization in a Geometrically Confined Reaction Space. Macromolecular Theory and Simulations, 2014, 23, 110-124.	1.4	3
17	Synthesis of zeolite@metal–organic framework core–shell particles as bifunctional catalysts. RSC Advances, 2014, 4, 30673.	3.6	42
18	Kinetics and Growth of Polyethylene Nanofibrils over Metallocene Catalyst Supported on Flat Silica and Spherical Nano‧ilica Particles. Macromolecular Reaction Engineering, 2014, 8, 755-765.	1.5	10

#	Article	IF	CITATIONS
19	UltraHigh Molecular Weight Nonlinear Polycarbonates Synthesized in Microlayers. Industrial & Engineering Chemistry Research, 2013, 52, 17419-17431.	3.7	16
20	Metallocene Catalyzed Ethylene Polymerization with Specially Designed Catalyst Supports and Reaction Systems. Macromolecular Symposia, 2013, 333, 256-265.	0.7	5
21	Kinetics of Reversible Oligomerization of l-Lactic Acid with a SnCl2·2H2O/p-Toluenesulfonic Acid Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 16617-16625.	3.7	8
22	Polymerization of Ethylene over <i>rac</i> -Et(1-indenyl) ₂ ZrCl ₂ /MAO Catalyst Supported on Pseudo-Inverse Opal Silica Particles. Industrial & Engineering Chemistry Research, 2012, 51, 9742-9749.	3.7	6
23	Spherical Pseudoâ€Inverse Opal Silica with Pomegranateâ€Like Polymer Microparticles as Templates. Macromolecular Materials and Engineering, 2012, 297, 1021-1027.	3.6	2
24	Fabrication and characterization of titania inverse opals using supercritical carbon dioxide. Journal of Supercritical Fluids, 2012, 67, 71-75.	3.2	3
25	Transitions of morphological patterns of crystallizing polycarbonate in thin films. Journal of Applied Polymer Science, 2012, 124, 560-567.	2.6	6
26	Kinetics of Styrene Polymerization to Syndiotactic Polystyrene over Metallocene Catalyst on Flat Surface, Silica Nanotube Reactors and Porous Silica Particles. Macromolecules, 2011, 44, 1385-1392.	4.8	17
27	Modeling of Phase Inversion and Particle Stability in the Dispersion Polymerization of Methyl Methacrylate in a Nonâ€polar Hydrocarbon Solvent. Macromolecular Reaction Engineering, 2011, 5, 340-351.	1.5	4
28	Experimental and theoretical study of the reaction locus during the dispersion polymerization of methyl methacrylate in a nonpolar hydrocarbon solvent at low temperature. Polymer Engineering and Science, 2011, 51, 1969-1986.	3.1	3
29	Polymer particles with a pomegranate-like internal structure via micro-dispersive polymerization in a geometrically confined reaction space I. Experimental study. Polymer, 2011, 52, 942-948.	3.8	6
30	Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals. Bulletin of the Korean Chemical Society, 2011, 32, 2178-2182.	1.9	6
31	Silica Nanotube Reactors for Catalytic Polymerization of Styrene and Olefins. Macromolecular Symposia, 2010, 289, 25-32.	0.7	1
32	Estimation of Initial Conditions of a Prepolymer for a Solidâ€State Stepâ€Growth Polymerization Process. Macromolecular Reaction Engineering, 2010, 4, 613-620.	1.5	5
33	Inverse Free Radical Suspension Polymerization as a Potential Means to Encapsulate Biologically Active Materials. Chemical Engineering and Technology, 2010, 33, 1833-1840.	1.5	7
34	Polymerization of methyl methacrylate in the presence of a nonpolar hydrocarbon solvent. I. Construction of a complete ternary phase diagram through an <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2010, 116, 3648-3658.	2.6	3
35	Preparation of Micronâ€Sized Spherulitic Bisphenol A Polycarbonate Particles in Thin Films. Macromolecular Materials and Engineering, 2009, 294, 847-854.	3.6	5
36	Miniemulsion Copolymerization of Ethylene and Vinyl Acetate. Macromolecular Reaction Engineering, 2009, 3, 412-418.	1.5	18

#	Article	IF	CITATIONS
37	Reduction of Bisphenol A Residue in Polycarbonates in a Two-Stage Step-Growth Polymerization Process. Industrial & Engineering Chemistry Research, 2009, 48, 4274-4282.	3.7	2
38	Optimizing polymer reactivities for the solid-state polycondensation of AA and BB type monomers. Polymer, 2008, 49, 2817-2824.	3.8	5
39	Nascent morphology of syndiotactic polystyrene synthesized over silica-supported metallocene catalyst. Polymer, 2008, 49, 4141-4149.	3.8	14
40	Dynamic Modeling of a Moving-Packed-Bed Reactor for the Solid-State Polymerization of Bisphenol-A Polycarbonate. Industrial & Engineering Chemistry Research, 2008, 47, 3687-3699.	3.7	9
41	Syndiotactic Polystyrene Nanofibrils in Silica Nanotube Reactors:  Understanding of Synthesis with Ultrahigh Molecular Weight. Journal of the American Chemical Society, 2008, 130, 3920-3926.	13.7	32
42	Technical Processes for Industrial Production. Plastics Engineering, 2008, , 369-427.	0.1	0
43	Continuous Processes for Radical Vinyl Polymerization. Plastics Engineering, 2008, , 347-368.	0.1	Ο
44	Rate and molecular weight distribution modeling of syndiospecific styrene polymerization over silica-supported metallocene catalyst. Polymer, 2007, 48, 6519-6531.	3.8	20
45	A Reduced Third Order Markov Model for Ethylene-Norbornene Copolymerization Kinetics with Homogeneous Metallocene Catalysts. Macromolecular Reaction Engineering, 2007, 1, 68-77.	1.5	7
46	New Developments in Polymer Reaction Engineering. Studies in Surface Science and Catalysis, 2006, , 109-114.	1.5	2
47	Polymerization of ethylene with embedded metallocene catalysts. Studies in Surface Science and Catalysis, 2006, , 849-852.	1.5	1
48	Physical transitions and nascent morphology of syndiotactic polystyrene in slurry polymerization with embedded Cp*Ti(OMe)3/methyl aluminoxane catalyst. Polymer, 2005, 46, 5032-5039.	3.8	12
49	Modeling of Ethylene-Norbornene Copolymer Microstructure in Solution Polymerization with Homogeneous Metallocene Catalysts. Macromolecular Materials and Engineering, 2005, 290, 353-362.	3.6	10
50	Modeling of Solid-State Polymerization of Bisphenol A Polycarbonate. Industrial & Engineering Chemistry Research, 2005, 44, 2494-2505.	3.7	20
51	Modeling and Analysis of Ethylene/Norbornene Copolymerization withansa-Zirconocene/Methylaluminoxane Catalysts in a Continuous Polymerization Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 6496-6503.	3.7	9
52	Recent advances in polymer reaction engineering: Modeling and control of polymer properties. Korean Journal of Chemical Engineering, 2004, 21, 147-167.	2.7	47
53	Polymerization rate modeling of ethylene polymerization with supported chromium oxide catalysts. Journal of Applied Polymer Science, 2004, 91, 2923-2927.	2.6	20
54	Modeling of Ethylene Polymerization Kinetics over Supported Chromium Oxide Catalysts. Macromolecular Theory and Simulations, 2004, 13, 169-177.	1.4	14

#	Article	IF	CITATIONS
55	Syndiospecific polymerization of styrene with embedded metallocene catalysts. Macromolecular Symposia, 2004, 206, 375-382.	0.7	8
56	Kinetics of slurry phase polymerization of styrene to syndiotactic polystyrene with pentamethyl cyclopentadienyl titanium trimethoxide and methyl aluminoxane. I. Reaction rate analysis. Journal of Applied Polymer Science, 2003, 88, 2132-2137.	2.6	15
57	Two-phase model for continuous final-stage melt polycondensation of poly(ethylene terephthalate). III. Modeling of multiple reactors with multiple reaction zones. Journal of Applied Polymer Science, 2003, 90, 1088-1095.	2.6	8
58	Kinetic Modeling of Ethyleneâ^'Norbornene Copolymerization Using Homogeneous Metallocene Catalysts. Macromolecules, 2003, 36, 4216-4225.	4.8	31
59	Modeling of a Solid-State Polycondensation Process for the Production of PET. Journal of Chemical Engineering of Japan, 2003, 36, 912-925.	0.6	8
60	Melt Polycondensation of Bisphenol A Polycarbonate by a Forced Gas Sweeping Process. Industrial & Engineering Chemistry Research, 2001, 40, 1312-1319.	3.7	28
61	Melt Polycondensation of Bisphenol A Polycarbonate by Forced Gas Sweeping Process II. Continuous Rotating-Disk Reactor. Industrial & Engineering Chemistry Research, 2001, 40, 3459-3466.	3.7	26
62	Melt polymerization of bisphenol-A and diphenyl carbonate in a semibatch reactor. Journal of Applied Polymer Science, 2001, 80, 1253-1266.	2.6	42
63	The forced gas sweeping process for semibatch melt polycondensation of poly(ethylene) Tj ETQq1 1 0.784314	rgBT /Overl	locg 10 Tf 50
64	Modeling of particle segregation phenomena in a gas phase fluidized bed olefin polymerization reactor. Chemical Engineering Science, 2001, 56, 4069-4083.	3.8	41
65	Control of copolymer hydrodynamic volume distribution in a semibatch free radical copolymerization process. Computers and Chemical Engineering, 1999, 23, 1153-1165.	3.8	12
66	Copolymer Hydrodynamic Volume Distribution in a Free Radical Copolymerization Process. Polymer-Plastics Technology and Engineering, 1999, 7, 43-70.	0.7	4
67	Experimental studies on optimal molecular weight distribution control in a batch-free radical polymerization process. Chemical Engineering Science, 1998, 53, 2769-2790.	3.8	78
68	Calculation of molecular weight distribution in a batch thermal polymerization of styrene. Macromolecular Theory and Simulations, 1998, 7, 327-332.	1.4	19
69	Control of molecular weight distribution and tensile strength in a free radical styrene polymerization process. Journal of Applied Polymer Science, 1998, 70, 1017-1026.	2.6	12
70	Optimal control of transient dynamics in a continuous polymerization reactor. , 1997, , .		3
71	Estimation of Kinetic Parameters in Transition-Metal-Catalyzed Gas-Phase Olefin Copolymerization Processes. Industrial & Engineering Chemistry Research, 1997, 36, 1095-1102.	3.7	11
72	Discrete Optimal Control of Molecular Weight Distribution in a Batch Free Radical Polymerization Process. Industrial & Engineering Chemistry Research, 1997, 36, 3676-3684.	3.7	59

#	Article	IF	CITATIONS
73	Calculation of Molecular Weight Distribution from Molecular Weight Moments in Free Radical Polymerization. Industrial & Engineering Chemistry Research, 1997, 36, 1419-1423.	3.7	83
74	On-Line Parameter Estimation in a Continuous Polymerization Process. Industrial & Engineering Chemistry Research, 1996, 35, 1332-1343.	3.7	38
75	Modeling of a continuous rotating disk polycondensation reactor for the synthesis of thermoplastic polyesters. Journal of Applied Polymer Science, 1996, 61, 763-773.	2.6	11
76	On-line monitoring and control of a batch polymerization reactor. Journal of Process Control, 1996, 6, 119-127.	3.3	36
77	Polymerization of styrene in a continuous filled tubular reactor. Polymer Engineering and Science, 1996, 36, 65-77.	3.1	15
78	Sorption and polymerization of methyl isopropenyl ketone in low-density polyethylene. Journal of Applied Polymer Science, 1995, 55, 501-515.	2.6	0
79	In-line dielectric monitoring of monomer conversion in a batch polymerization reactor. Journal of Applied Polymer Science, 1995, 55, 1361-1365.	2.6	16
80	A study on the polymer layer-forming phenomena in a rotating disk polycondensation reactor. Journal of Applied Polymer Science, 1995, 55, 1819-1826.	2.6	13
81	Melt polycondensation of poly(ethylene terephthalate) in a rotating disk reactor. Journal of Applied Polymer Science, 1995, 58, 1473-1483.	2.6	25
82	Modeling of a multistage high-pressure ethylene polymerization reactor. Chemical Engineering Science, 1994, 49, 4959-4969.	3.8	9
83	Population balance modeling for a continuous gas phase olefin polymerization reactor. Journal of Applied Polymer Science, 1994, 53, 1589-1597.	2.6	45
84	Effect of initiator characteristics on high-pressure ethylene polymerization in autoclave reactors. Industrial & Engineering Chemistry Research, 1994, 33, 211-217.	3.7	14
85	Multistage melt polymerization of bisphenol-A and diphenyl carbonate to polycarbonate. Journal of Applied Polymer Science, 1993, 49, 747-764.	2.6	47
86	Experimental and modeling studies on melt transesterification of dimethyl terephthalate with ethylene glycol in a continuous stirred tank reactor. Industrial & Engineering Chemistry Research, 1993, 32, 800-808.	3.7	9
87	Kinetics of melt transesterification of dimethyl terephthalate with bis(2-hydroxyethyl) terephthalate in the synthesis of poly(ethylene terephthalate). Industrial & Engineering Chemistry Research, 1992, 31, 769-777.	3.7	17
88	Kinetics of melt transesterification of diphenyl carbonate and bisphenol A to polycarbonate with lithium hydroxide monohydrate catalyst. Industrial & Engineering Chemistry Research, 1992, 31, 2118-2127.	3.7	40
89	Dynamics of a continuous stirred tank reactor for styrene polymerization initiated by a binary initiator mixture. II: Effect of viscosity dependent heat transfer coefficient. Polymer Engineering and Science, 1992, 32, 494-505.	3.1	15
90	Kinetics of free radical styrene polymerization with the symmetrical bifunctional initiator 2,5-dimethyl-2,5-bis(2-ethyl hexanoyl peroxy) hexane. Polymer, 1992, 33, 4582-4591.	3.8	27

#	Article	IF	CITATIONS
91	Multiobjective dynamic optimization of batch free radical polymerization process catalyzed by mixed initiator systems. Journal of Applied Polymer Science, 1992, 44, 1759-1778.	2.6	18
92	Free-radical polymerization of styrene with a binary mixture of symmetrical bifunctional initiators. Journal of Applied Polymer Science, 1992, 46, 1353-1367.	2.6	26
93	Two-phase model for continuous final stage melt polycondensation of poly(ethylene terephthalate). 1. Steady-state analysis. Industrial & Engineering Chemistry Research, 1991, 30, 2-12.	3.7	37
94	Two-phase model for continuous final-stage melt polycondensation of poly(ethylene terephthalate). 2. Analysis of dynamic behavior. Industrial & Engineering Chemistry Research, 1991, 30, 1712-1718.	3.7	30
95	On-line estimation and control of a continuous stirred tank polymerization reactor. Journal of Process Control, 1991, 1, 96-110.	3.3	39
96	Continuous olefin copolymerization with soluble Ziegler-Natta catalysts. AICHE Journal, 1991, 37, 1255-1260.	3.6	13
97	Dynamics of a cascade of two continuous stirred tank polymerization reactors with a binary initiator mixture. Polymer Engineering and Science, 1991, 31, 333-352.	3.1	24
98	An experimental study of multiobjective dynamic optimization of a semibatch copolymerization process. Polymer Engineering and Science, 1991, 31, 353-364.	3.1	42
99	Dynamics of a CSTR for styrene polymerization initiated by a binary initiator system. Polymer Engineering and Science, 1990, 30, 279-290.	3.1	22
100	Estimation and Control of Continuous Stirred Tank Polymerization Reactors. , 1990, , .		0
101	Modeling of free radical polymerization of styrene catalyzed by unsymmetrical bifunctional initiators. Chemical Engineering Science, 1989, 44, 297-312.	3.8	25
102	Bulk free radical polymerization of styrene with unsymmetrical bifunctional initiators. Industrial & Engineering Chemistry Research, 1989, 28, 131-138.	3.7	28
103	Kinetics of bulk styrene polymerization catalyzed by symmetrical bifunctional initiators. Journal of Applied Polymer Science, 1988, 35, 1547-1562.	2.6	35
104	The dynamic behavior of continuous stirred-bed reactors for the solid catalyzed gas phase polymerization of propylene. Chemical Engineering Science, 1988, 43, 2587-2604.	3.8	39
105	Optimal state estimation in the transesterification stage of a continuous polyethylene terephthalate condensation polymerization process. Chemical Engineering Science, 1988, 43, 749-762.	3.8	24
106	Steady state behavior of a continuous stirred tank reactor for styrene polymerization with bifunctional free radical initiators. Chemical Engineering Science, 1988, 43, 965-977.	3.8	19
107	Modeling of free-radical polymerization of styrene by bifunctional initiators. AICHE Journal, 1987, 33, 2067-2076.	3.6	44
108	Polymerization of olefines through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. Journal of Applied Polymer Science, 1986, 31, 2231-2265.	2.6	132

Куи Үолс Сног

#	Article	IF	CITATIONS
109	Polymerization of olefins through heterogeneous catalysis. III. Polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. Journal of Applied Polymer Science, 1986, 32, 2935-2960.	2.6	228
110	Analysis of steady state of free radical solution polymerization in a continuous stirred tank reactor. Polymer Engineering and Science, 1986, 26, 975-981.	3.1	17
111	Polymerization of olefins through heterogeneous catalysis. II. Kinetics of gas phase propylene polymerization with Ziegler–Natta catalysts. Journal of Applied Polymer Science, 1985, 30, 1065-1081.	2.6	42
112	The dynamic behaviour of fluidized bed reactors for solid catalysed gas phase olefin polymerization. Chemical Engineering Science, 1985, 40, 2261-2279.	3.8	184
113	Polymerization of olefins through heterogeneous catalysis, I. Low pressure propylene polymerization in slurry with Ziegler–Natta catalyst. Journal of Applied Polymer Science, 1982, 27, 1691-1706.	2.6	39
114	Step-Growth Polymerization. , 0, , 273-314.		15
115	Syndiospecific Styrene Polymerization with Heterogenized Transition Metal Catalysts. , 0, , 140-154.		Ο
116	Effects of Silica Support Properties on the Performance of Immobilized Metallocene Catalysts for Ethylene Polymerization. Macromolecular Reaction Engineering, 0, , 2200020.	1.5	0