
Shawn R Narum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5970512/publications.pdf Version: 2024-02-01

SHAMM P NADIM

#	Article	IF	CITATIONS
1	Beyond Bonferroni: Less conservative analyses for conservation genetics. Conservation Genetics, 2006, 7, 783-787.	0.8	836
2	Genotypingâ€byâ€sequencing in ecological and conservation genomics. Molecular Ecology, 2013, 22, 2841-2847.	2.0	469
3	Comparison of <i>F</i> _{ST} outlier tests for SNP loci under selection. Molecular Ecology Resources, 2011, 11, 184-194.	2.2	448
4	Genotypingâ€inâ€Thousands by sequencing (GTâ€seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Molecular Ecology Resources, 2015, 15, 855-867.	2.2	381
5	The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution. Nature Genetics, 2018, 50, 270-277.	9.4	262
6	Genomics in Conservation: Case Studies and Bridging the Gap between Data and Application. Trends in Ecology and Evolution, 2016, 31, 81-83.	4.2	173
7	Population genomics of <scp>P</scp> acific lamprey: adaptive variation in a highly dispersive species. Molecular Ecology, 2013, 22, 2898-2916.	2.0	166
8	Genomeâ€wide association reveals genetic basis for the propensity to migrate in wild populations of rainbow and steelhead trout. Molecular Ecology, 2013, 22, 3061-3076.	2.0	157
9	Thermal adaptation and acclimation of ectotherms from differing aquatic climates. Molecular Ecology, 2013, 22, 3090-3097.	2.0	153
10	Differentiating salmon populations at broad and fine geographical scales with microsatellites and single nucleotide polymorphisms. Molecular Ecology, 2008, 17, 3464-3477.	2.0	147
11	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Molecular Ecology Resources, 2009, 9, 1460-1466.	2.2	128
12	Selection for upper thermal tolerance in rainbow trout (<i>Oncorhynchus mykiss</i> Walbaum). Journal of Experimental Biology, 2015, 218, 803-812.	0.8	110
13	Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153064.	1.2	107
14	Transcriptomic response to heat stress among ecologically divergent populations of redband trout. BMC Genomics, 2015, 16, 103.	1.2	106
15	Aquatic Landscape Genomics and Environmental Effects on Genetic Variation. Trends in Ecology and Evolution, 2019, 34, 641-654.	4.2	97
16	Environmental adaptation in Chinook salmon (<i>Oncorhynchus tshawytscha</i>) throughout their North American range. Molecular Ecology, 2015, 24, 5573-5595.	2.0	94
17	A validation of parentage-based tagging using hatchery steelhead in the Snake River basin. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 1046-1054.	0.7	88
18	Genetic divergence of sympatric resident and anadromous forms of Oncorhynchus mykiss in the Walla Walla River, U.S.A Journal of Fish Biology, 2004, 65, 471-488.	0.7	79

#	Article	IF	CITATIONS
19	Association Mapping of Disease Resistance Traits in Rainbow Trout Using Restriction Site Associated DNA Sequencing. G3: Genes, Genomes, Genetics, 2014, 4, 2473-2481.	0.8	79
20	Influence of landscape on resident and anadromous life history types of <i>Oncorhynchus mykiss</i> . Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 1013-1023.	0.7	78
21	Adaptation of redband trout in desert and montane environments. Molecular Ecology, 2010, 19, 4622-4637.	2.0	75
22	Use of genotyping by sequencing data to develop a highâ€ŧhroughput and multifunctional <scp>SNP</scp> panel for conservation applications in Pacific lamprey. Molecular Ecology Resources, 2015, 15, 187-202.	2.2	75
23	Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Molecular Ecology, 2018, 27, 659-674.	2.0	72
24	Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of <scp>C</scp> hinook salmon. Molecular Ecology, 2012, 21, 5236-5250.	2.0	64
25	Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180935.	1.2	62
26	Adaptive genetic variation distinguishes Chilean blue mussels (<i>Mytilus chilensis</i>) from different marine environments. Ecology and Evolution, 2016, 6, 3632-3644.	0.8	57
27	Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (<i>Thaleichthys pacificus</i> , Osmeridae), an anadromous Pacific smelt. Molecular Ecology Resources, 2015, 15, 1421-1434.	2.2	56
28	Relative contributions of neutral and nonâ€neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes. Evolutionary Applications, 2014, 7, 682-701.	1.5	52
29	Divergent life-history races do not represent Chinook salmon coast-wide: the importance of scale in Quaternary biogeography. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 415-435.	0.7	50
30	Monitoring Stockâ€5pecific Abundance, Run Timing, and Straying of Chinook Salmon in the Columbia River Using Genetic Stock Identification (GSI). North American Journal of Fisheries Management, 2014, 34, 184-201.	0.5	47
31	Genomic signatures among <i>Oncorhynchus nerka</i> ecotypes to inform conservation and management of endangered Sockeye Salmon. Evolutionary Applications, 2016, 9, 1285-1300.	1.5	47
32	Parentageâ€Based Tagging: Reviewing the Implementation of a New Tool for an Old Problem. Fisheries, 2019, 44, 412-422.	0.6	47
33	The changing face of genome assemblies: Guidance on achieving highâ€quality reference genomes. Molecular Ecology Resources, 2021, 21, 641-652.	2.2	44
34	Examining Genetic Lineages of Chinook Salmon in the Columbia River Basin. Transactions of the American Fisheries Society, 2010, 139, 1465-1477.	0.6	43
35	Utility of pooled sequencing for association mapping in nonmodel organisms. Molecular Ecology Resources, 2018, 18, 825-837.	2.2	43
36	Differential adult migration-timing and stock-specific abundance of steelhead in mixed stock assemblages. ICES Journal of Marine Science, 2016, 73, 2606-2615.	1.2	42

#	Article	IF	CITATIONS
37	Impacts of Marker Class Bias Relative to Locus-Specific Variability on Population Inferences in Chinook Salmon: A Comparison of Single-Nucleotide Polymorphisms with Short Tandem Repeats and Allozymes. Transactions of the American Fisheries Society, 2007, 136, 1674-1687.	0.6	41
38	Sequence Divergence of Heat Shock Genes within and among 3 Oncorhynchids. Journal of Heredity, 2010, 101, 107-112.	1.0	41
39	Genes predict long distance migration and large body size in a migratory fish, Pacific lamprey. Evolutionary Applications, 2014, 7, 1192-1208.	1.5	41
40	Differential Expression of Genes that Control Respiration Contribute to Thermal Adaptation in Redband Trout (Oncorhynchus mykiss gairdneri). Genome Biology and Evolution, 2015, 7, 1404-1414.	1.1	41
41	Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead. BMC Evolutionary Biology, 2018, 18, 140.	3.2	41
42	Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161380.	1.2	40
43	Major Lineages and Metapopulations in Columbia River <i>Oncorhynchus mykiss</i> Are Structured by Dynamic Landscape Features and Environments. Transactions of the American Fisheries Society, 2011, 140, 665-684.	0.6	39
44	Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics. Molecular Ecology, 2016, 25, 689-705.	2.0	39
45	Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evolutionary Applications, 2018, 11, 1686-1699.	1.5	38
46	Longâ€ŧerm evaluation of fitness and demographic effects of a Chinook Salmon supplementation program. Evolutionary Applications, 2019, 12, 456-469.	1.5	37
47	Landscape features along migratory routes influence adaptive genomic variation in anadromous steelhead (<i>Oncorhynchus mykiss</i>). Molecular Ecology, 2018, 27, 128-145.	2.0	36
48	Signatures of polygenic adaptation associated with climate across the range of a threatened fish species with high genetic connectivity. Molecular Ecology, 2017, 26, 6253-6269.	2.0	34
49	Heterogeneous genetic basis of age at maturity in salmonid fishes. Molecular Ecology, 2021, 30, 1435-1456.	2.0	29
50	Resolving Adaptive and Demographic Divergence among Chinook Salmon Populations in the Columbia River Basin. Transactions of the American Fisheries Society, 2011, 140, 783-807.	0.6	27
51	Development of 54 novel singleâ€nucleotide polymorphism (SNP) assays for sockeye and coho salmon and assessment of available SNPs to differentiate stocks within the Columbia River. Molecular Ecology Resources, 2011, 11, 20-30.	2.2	27
52	Estimating Abundance and Life History Characteristics of Threatened Wild Snake River Steelhead Stocks by Using Genetic Stock Identification. Transactions of the American Fisheries Society, 2012, 141, 1310-1327.	0.6	26
53	Genomic islands of divergence infer a phenotypic landscape in Pacific lamprey. Molecular Ecology, 2020, 29, 3841-3856.	2.0	26
54	Genetic Variation and Structure of Chinook Salmon Life History Types in the Snake River. Transactions of the American Fisheries Society, 2007, 136, 1252-1262.	0.6	25

#	Article	IF	CITATIONS
55	Quantitative PCR assessment of microsatellite and SNP genotyping with variable quality DNA extracts. Conservation Genetics, 2009, 10, 779-784.	0.8	25
56	Whole genome resequencing reveals genomic regions associated with thermal adaptation in redband trout. Molecular Ecology, 2021, 30, 162-174.	2.0	25
57	An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evolutionary Applications, 2021, 14, 1929-1957.	1.5	25
58	Implications of Large-Effect Loci for Conservation: A Review and Case Study with Pacific Salmon. Journal of Heredity, 2022, 113, 121-144.	1.0	25
59	Single-Nucleotide Polymorphism (SNP) Loci Correlated with Run Timing in Adult Chinook Salmon from the Columbia River Basin. Transactions of the American Fisheries Society, 2011, 140, 855-864.	0.6	23
60	Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evolutionary Applications, 2022, 15, 3-21.	1.5	23
61	Characterization of 22 novel single nucleotide polymorphism markers in steelhead and rainbow trout. Molecular Ecology Resources, 2009, 9, 318-322.	2.2	22
62	Candidate Genetic Markers Associated with Anadromy in <i>Oncorhynchus mykiss</i> of the Klickitat River. Transactions of the American Fisheries Society, 2011, 140, 843-854.	0.6	22
63	Reproductive isolation following reintroduction of Chinook salmon with alternative life histories. Conservation Genetics, 2007, 8, 1123-1132.	0.8	19
64	Identification of Novel Singleâ€Nucleotide Polymorphisms in Chinook Salmon and Variation among Life History Types. Transactions of the American Fisheries Society, 2008, 137, 96-106.	0.6	19
65	Migrating adult steelhead utilize a thermal refuge during summer periods with high water temperatures. ICES Journal of Marine Science, 2016, 73, 2616-2624.	1.2	19
66	Validation and association of candidate markers for adult migration timing and fitness in Chinook Salmon. Evolutionary Applications, 2020, 13, 2316-2332.	1.5	19
67	Steelhead (<i>Oncorhynchus mykiss</i>) lineages and sexes show variable patterns of association of adult migration timing and ageâ€atâ€maturity traits with two genomic regions. Evolutionary Applications, 2020, 13, 2836-2856.	1.5	19
68	Distribution of genetic variation underlying adult migration timing in steelhead of the Columbia River basin. Ecology and Evolution, 2020, 10, 9486-9502.	0.8	18
69	Microsatellites Reveal Population Substructure of Klickitat River Native Steelhead and Genetic Divergence from an Introduced Stock. North American Journal of Fisheries Management, 2006, 26, 147-155.	0.5	17
70	Genomic patterns of diversity and divergence of two introduced salmonid species in Patagonia, South America. Evolutionary Applications, 2017, 10, 402-416.	1.5	17
71	Evidence for the genetic basis and epistatic interactions underlying ocean―and riverâ€maturing ecotypes of Pacific Lamprey (<i>Entosphenus tridentatus</i>) returning to the Klamath River, California. Molecular Ecology, 2019, 28, 3171-3185.	2.0	15
72	Parentage-based tagging improves escapement estimates for ESA-listed adult Chinook salmon and steelhead in the Snake River basin. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78, 349-360.	0.7	15

#	Article	IF	CITATIONS
73	Biodiversity monitoring using environmental DNA. Molecular Ecology Resources, 2021, 21, 1405-1409.	2.2	15
74	Sea-to-sea survival of late-run adult steelhead (<i>Oncorhynchus mykiss</i>) from the Columbia and Snake rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 331-341.	0.7	14
75	Development and Application of Singleâ€Nucleotide Polymorphism (<scp>SNP</scp>) Genetic Markers for Conservation Monitoring of Burbot Populations. Transactions of the American Fisheries Society, 2019, 148, 661-670.	0.6	14
76	Influences of Hatchery Supplementation, Spawner Distribution, and Habitat on Genetic Structure of Chinook Salmon in the South Fork Salmon River, Idaho. North American Journal of Fisheries Management, 2012, 32, 346-359.	0.5	13
77	A Distinctive Microsatellite Locus That Differentiates Ocean-Type from Stream-Type Chinook Salmon in the Interior Columbia River Basin. Transactions of the American Fisheries Society, 2004, 133, 1051-1055.	0.6	11
78	Small-Scale Genetic Structure and Variation in Steelhead of the Grande Ronde River, Oregon, USA. Transactions of the American Fisheries Society, 2006, 135, 979-986.	0.6	11
79	Patterns of genomic variation in Coho salmon following reintroduction to the interior Columbia River. Ecology and Evolution, 2017, 7, 10350-10360.	0.8	11
80	Detecting genomic variation underlying phenotypic characteristics of reintroduced Coho salmon (Oncorhynchus kisutch). Conservation Genetics, 2020, 21, 1011-1021.	0.8	10
81	Genomic region associated with run timing has similar haplotypes and phenotypic effects across three lineages of Chinook salmon. Evolutionary Applications, 2021, 14, 2273-2285.	1.5	10
82	Localized Genetic Structure Persists in Wild Populations of Chinook Salmon in the John Day River Despite Gene Flow from Outside Sources. Transactions of the American Fisheries Society, 2008, 137, 1650-1656.	0.6	8
83	What goes up does not come down: the stock composition and demographic characteristics of upstream migrating steelhead differ from post-spawn emigrating kelts. ICES Journal of Marine Science, 2016, 73, 2595-2605.	1.2	8
84	Evaluation of a trap-and-transport program for a threatened population of steelhead (Oncorhynchus) Tj ETQqO)/ TggT (0	Overlock 10 Tf
85	Early Observations from Monitoring a Reintroduction Program: Return of Sockeye Salmon to a Nursery Lake of Historical Importance. Transactions of the American Fisheries Society, 2019, 148, 271-288.	0.6	6
86	Introduction to a Special Section: Genetic Adaptation of Natural Salmonid Populations. Transactions of the American Fisheries Society, 2011, 140, 659-664.	0.6	5
87	Restricted gene flow between resident <i>Oncorhynchus mykiss</i> and an admixed population of anadromous steelhead. Ecology and Evolution, 2017, 7, 8349-8362.	0.8	5
88	Formation of population genetic structure following the introduction and establishment of non-native American shad (Alosa sapidissima) along the Pacific Coast of North America. Biological Invasions, 2018, 20, 3123-3143.	1.2	5
89	Genotyping single nucleotide polymorphisms and inferring ploidy by amplicon sequencing for polyploid, ploidyâ€variable organisms. Molecular Ecology Resources, 2021, 21, 2288-2298.	2.2	5
90	Influence of environmental conditions at spawning sites and migration routes on adaptive variation and population connectivity in Chinook salmon. Ecology and Evolution, 2021, 11, 16890-16908.	0.8	5

#	Article	IF	CITATIONS
91	Effects of Supplementation in Upper Yakima River Chinook Salmon. Transactions of the American Fisheries Society, 2022, 151, 373-388.	0.6	4
92	Relative Genetic Diversity Estimates among Four Pacific Salmonids. Transactions of the American Fisheries Society, 2011, 140, 822-828.	0.6	3
93	Whole-Genome Resequencing to Evaluate Life History Variation in Anadromous Migration of Oncorhynchus mykiss. Frontiers in Genetics, 2022, 13, 795850.	1.1	3
94	Epigenetic effects associated with salmonid supplementation and domestication. Environmental Biology of Fishes, 0, , .	0.4	3
95	Editorial 2016. Molecular Ecology Resources, 2016, 16, 1-6.	2.2	1
96	Editorial 2022. Molecular Ecology Resources, 2022, 22, 1-8.	2.2	1
97	Editorial 2017. Molecular Ecology Resources, 2017, 17, 129-137.	2.2	ο