

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/597039/publications.pdf Version: 2024-02-01

YAN CAO

#	Article	IF	CITATIONS
1	Poly(ionic liquid)–polyoxometalate/graphene oxide composites as catalysts for deep desulfurization. New Journal of Chemistry, 2022, 46, 756-766.	2.8	5
2	Structure and electrochemical performance of LiFePO4 cathode materials modified with carbon coating and metal doping. Journal of Solid State Electrochemistry, 2022, 26, 1655-1665.	2.5	7
3	Encapsulated peroxophosphotungstates catalyst into magnetic MOF: Magnetically recoverable heterogeneous high efficiency desulfurization catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 108270.	6.7	4
4	Metal–organic framework (UIO-66-NH2)-encapsulated peroxophosphotungstate (PW4) loaded on graphene oxide (GO) as catalyst for desulfurization of fuel. Microporous and Mesoporous Materials, 2022, 341, 112105.	4.4	5
5	Deep desulfurization of fuels using supported ionic liquid-polyoxometalate hybrid as catalyst: A comparison of different types of ionic liquids. Journal of Hazardous Materials, 2021, 401, 123267.	12.4	50
6	A simple desulfurization process to achieve high efficiency, sustainability and cost-effectivity via peroxotungstate catalyst. Molecular Catalysis, 2021, 505, 111515.	2.0	11
7	Design and synthesis heteropolyacid modified mesoporous hybrid material CNTs@MOF-199 catalyst by different methods for extraction-oxidation desulfurization of model diesel. Microporous and Mesoporous Materials, 2020, 291, 109702.	4.4	20
8	An Effective Hybrid Heterogeneous Catalyst to Desulfurize Diesel: Peroxotungstate@Metal–Organic Framework. Molecules, 2020, 25, 5494.	3.8	17
9	Dawson type polyoxometalate based-poly ionic liquid supported on different carbon materials for high-efficiency oxidative desulfurization with molecular oxygen as the oxidant. New Journal of Chemistry, 2020, 44, 20358-20366.	2.8	10
10	Support ionic liquid-heteropolyacid hybrid on mesoporous carbon aerogel with a high surface area for highly efficient desulfurization under mild conditions. Microporous and Mesoporous Materials, 2020, 305, 110392.	4.4	10
11	Amino-substituted binuclear phthalocyanines bonding with multi-wall carbon nanotube as efficient electrocatalysts for lithium-thionyl chloride battery. Journal of Materials Research, 2019, 34, 921-931.	2.6	4
12	Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes. Fuel, 2018, 224, 261-270.	6.4	73
13	A series of new Phthalocyanine derivatives with large conjugated system as catalysts for the Li/SOCl2 battery. Journal of Electroanalytical Chemistry, 2018, 808, 8-13.	3.8	12
14	Synthesis and characterization of TiO2-V2O5-MCM-41 for catalyzing transesterification of dimethyl carbonate with phenol. Chemistry Central Journal, 2018, 12, 104.	2.6	7
15	Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst. Journal of Hazardous Materials, 2018, 359, 258-265.	12.4	60
16	Carbon Nanotubes Chemically Modified by Metal Phthalocyanines with Excellent Electrocatalytic Activity to Li/SOCl ₂ Battery. Journal of the Electrochemical Society, 2017, 164, A1140-A1147.	2.9	20
17	Binuclear metal phthalocyanines bonding with carbon nanotubes as catalyst for the Li/SOCl 2 battery. Journal of Electroanalytical Chemistry, 2017, 791, 75-82.	3.8	16
18	Metal modified heteropolyacid incorporated into porous materials for a highly oxidative desulfurization of DBT under molecular oxygen. Fuel, 2017, 197, 551-561.	6.4	54