Michael Coe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5970183/publications.pdf

Version: 2024-02-01

30070 30922 21,085 105 54 102 citations h-index g-index papers 111 111 111 25417 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Unseen Effects of Deforestation: Biophysical Effects on Climate. Frontiers in Forests and Global Change, 2022, 5, .	2.3	77
2	How much inundation occurs in the Amazon River basin?. Remote Sensing of Environment, 2022, 278, 113099.	11.0	18
3	Amazon floodplain hydrology and implications for aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1029-1040.	2.0	26
4	Beyond Deforestation: Carbon Emissions From Land Grabbing and Forest Degradation in the Brazilian Amazon. Frontiers in Forests and Global Change, 2021, 4, .	2.3	23
5	Impacts of Variations in Caspian Sea Surface Area on Catchmentâ€Scale and Largeâ€Scale Climate. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034251.	3.3	10
6	Climatic limit for agriculture in Brazil. Nature Climate Change, 2021, 11, 1098-1104.	18.8	40
7	Modeling Nitrous Oxide Emissions From Large-Scale Intensive Cropping Systems in the Southern Amazon. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	1
8	Chapter 23: Impacts of deforestation and climate change on biodiversity, ecological processes, and environmental adaptation., 2021,,.		1
9	The gathering firestorm in southern Amazonia. Science Advances, 2020, 6, eaay1632.	10.3	132
10	Solving Brazil's land use puzzle: Increasing production and slowing Amazon deforestation. Land Use Policy, 2020, 91, 104362.	5.6	118
11	Collective action can avoid the "tragedy of the Amazon commons― Frontiers in Ecology and the Environment, 2020, 18, 430-431.	4.0	O
12	Trends in streamflow, evapotranspiration, and groundwater storage across the Amazon Basin linked to changing precipitation and land cover. Journal of Hydrology: Regional Studies, 2020, 32, 100755.	2.4	16
13	Amazon wildfires: Scenes from a foreseeable disaster. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151609.	1.2	75
14	Land use changes in Southeastern Amazon and trends in rainfall and water yield of the Xingu River during 1976–2015. Climatic Change, 2020, 162, 1419-1436.	3.6	20
15	Agricultural Expansion in Mato Grosso from 1986–2000: A Bayesian Time Series Approach to Tracking Past Land Cover Change. Remote Sensing, 2020, 12, 688.	4.0	12
16	Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environmental Research Letters, 2020, 15, 034053.	5.2	16
17	Droughts Amplify Differences Between the Energy Balance Components of Amazon Forests and Croplands. Remote Sensing, 2020, 12, 525.	4.0	15
18	A close look at above ground biomass of a large and heterogeneous Seasonally Dry Tropical Forest - Caatinga in North East of Brazil. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190282.	0.8	9

#	Article	lF	Citations
19	Climate risks to Amazon agriculture suggest a rationale to conserve local ecosystems. Frontiers in Ecology and the Environment, 2019, 17, 584-590.	4.0	36
20	Prolonged tropical forest degradation due to compounding disturbances: Implications for CO ₂ and H ₂ O fluxes. Global Change Biology, 2019, 25, 2855-2868.	9.5	43
21	Droughts, Wildfires, and Forest Carbon Cycling: A Pantropical Synthesis. Annual Review of Earth and Planetary Sciences, 2019, 47, 555-581.	11.0	131
22	Reimagining the potential of Earth observations for ecosystem service assessments. Science of the Total Environment, 2019, 665, 1053-1063.	8.0	39
23	Science in support of Amazonian conservation in the 21st century: the case of Brazil. Biotropica, 2018, 50, 850-858.	1.6	6
24	Coupling the terrestrial hydrology model with biogeochemistry to the integrated LAND surface model: Amazon Basin applications. Hydrological Sciences Journal, 2018, 63, 1954-1966.	2.6	5
25	BULC-U: Sharpening Resolution and Improving Accuracy of Land-Use/Land-Cover Classifications in Google Earth Engine. Remote Sensing, 2018, 10, 1455.	4.0	30
26	Deep soils modify environmental consequences of increased nitrogen fertilizer use in intensifying Amazon agriculture. Scientific Reports, 2018, 8, 13478.	3.3	56
27	Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment. Water (Switzerland), 2018, 10, 349.	2.7	27
28	The Forests of the Amazon and Cerrado Moderate Regional Climate and Are the Key to the Future. Tropical Conservation Science, 2017, 10, 194008291772067.	1.2	49
29	Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters, 2017, 12, 095005.	5.2	53
30	Surprisingly Modest Water Quality Impacts From Expansion and Intensification of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region. Tropical Conservation Science, 2017, 10, 194008291772066.	1.2	17
31	Land-Atmosphere Interactions. Advances in Meteorology, 2016, 2016, 1-1.	1.6	1
32	A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?. Hydrology and Earth System Sciences, 2016, 20, 2179-2194.	4.9	44
33	Landâ€use change affects water recycling in Brazil's last agricultural frontier. Global Change Biology, 2016, 22, 3405-3413.	9.5	258
34	The seasonal carbon and water balances of the Cerrado environment of Brazil: Past, present, and future influences of land cover and land use. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117, 66-78.	11.1	61
35	Changing Amazon biomass and the role of atmospheric CO ₂ concentration, climate, and land use. Global Biogeochemical Cycles, 2016, 30, 18-39.	4.9	32
36	The Hydrology and Energy Balance of the Amazon Basin. Ecological Studies, 2016, , 35-53.	1.2	10

#	Article	IF	CITATIONS
37	Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 2016, 22, 2516-2525.	9.5	35
38	Brazil's Market for Trading Forest Certificates. PLoS ONE, 2016, 11, e0152311.	2.5	91
39	Agricultural expansion dominates climate changes in southeastern Amazonia: the overlooked non-GHG forcing. Environmental Research Letters, 2015, 10, 104015.	5. 2	113
40	The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric <scp>CO</scp> _{2,} and land use. Global Change Biology, 2015, 21, 2569-2587.	9.5	97
41	Deforestation offsets water balance changes due to climate variability in the Xingu River in eastern Amazonia. Journal of Hydrology, 2015, 523, 822-829.	5.4	94
42	Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. Journal of Hydrology: Regional Studies, 2015, 4, 108-122.	2.4	142
43	Satellite-based hydrological dynamics of the world's largest continuous wetland. Remote Sensing of Environment, 2015, 170, 1-13.	11.0	64
44	The Susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. BioScience, 2015, 65, 893-905.	4.9	89
45	Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: implications for the provision of ecosystem services. Landscape Ecology, 2014, 29, 261-274.	4.2	89
46	Cracking Brazil's Forest Code. Science, 2014, 344, 363-364.	12.6	767
47	Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6347-6352.	7.1	576
48	Watershed responses to Amazon soya bean cropland expansion and intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120425.	4.0	71
49	Large-scale expansion of agriculture in Amazonia may be a no-win scenario. Environmental Research Letters, 2013, 8, 024021.	5.2	93
50	The vulnerability of Amazon freshwater ecosystems. Conservation Letters, 2013, 6, 217-229.	5.7	411
51	Land-use-driven stream warming in southeastern Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120153.	4.0	104
52	Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120152.	4.0	70
53	Deforestation and climate feedbacks threaten the ecological integrity of south–southeastern		118
	Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120155.	4.0	

#	Article	IF	CITATIONS
55	Improving simulated Amazon forest biomass and productivity by including spatial variation in biophysical parameters. Biogeosciences, 2013, 10, 2255-2272.	3.3	52
56	Water fluxes in the central Brazilian savanna: Seasonal patterns and land cover interdependencies as observed from GRACE, TRMM, and MODIS data. , 2012 , , .		2
57	The hydrology of the humid tropics. Nature Climate Change, 2012, 2, 655-662.	18.8	284
58	The Amazon basin in transition. Nature, 2012, 481, 321-328.	27.8	922
59	Forest fragmentation, climate change and understory fire regimes on the Amazonian landscapes of the Xingu headwaters. Landscape Ecology, 2012, 27, 585-598.	4.2	58
60	Fireâ€induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 2012, 18, 630-641.	9.5	225
61	Land Use and Climate. Remote Sensing and Digital Image Processing, 2012, , 301-314.	0.7	8
62	Equivalent water thickness in savanna ecosystems: MODIS estimates based on ground and EO-1 Hyperion data. International Journal of Remote Sensing, 2011, 32, 7423-7440.	2.9	19
63	Simulating fire regimes in the Amazon in response to climate change and deforestation., 2011, 21, 1573-1590.		114
64	Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting stormflow dynamics. Global Change Biology, 2011, 17, 1821-1833.	9.5	89
65	The effects of deforestation and climate variability on the streamflow of the Araguaia River, Brazil. Biogeochemistry, 2011, 105, 119-131.	3.5	155
66	The influence of historical and potential future deforestation on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks. Journal of Hydrology, 2009, 369, 165-174.	5.4	240
67	The potential ecological costs and cobenefits of REDD: a critical review and case study from the Amazon region. Global Change Biology, 2009, 15, 2803-2824.	9.5	157
68	Floodplain ecosystem processes. Geophysical Monograph Series, 2009, , 525-541.	0.1	54
69	Effects of climatic variability and deforestation on surface water regimes. Geophysical Monograph Series, 2009, , 543-553.	0.1	18
70	Simulating the surface waters of the Amazon River basin: impacts of new river geomorphic and flow parameterizations. Hydrological Processes, 2008, 22, 2542-2553.	2.6	126
71	Controls of climatic variability and land cover on land surface hydrology of northern Wisconsin, USA. Journal of Geophysical Research, 2008, 113, .	3.3	10
72	Estimating Seasonal Changes in Volumetric Soil Water Content at Landscape Scales in a Savanna Ecosystem Using Two-Dimensional Resistivity Profiling. Earth Interactions, 2008, 12, 1-25.	1.5	24

#	Article	IF	CITATIONS
73	Modeling the hydrological impact of land-use change in West Africa. Journal of Hydrology, 2007, 337, 258-268.	5.4	183
74	Carbon and water cycling in lake-rich landscapes: Landscape connections, lake hydrology, and biogeochemistry. Journal of Geophysical Research, 2007, 112 , .	3.3	42
75	Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. Frontiers in Ecology and the Environment, 2007, 5, 25-32.	4.0	439
76	Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology, 2007, 52, 814-822.	2.4	107
77	Root-Water-Uptake Based upon a New Water Stress Reduction and an Asymptotic Root Distribution Function. Earth Interactions, 2006, 10, 1-22.	1.5	58
78	Evaluating the seasonal and interannual variations in water balance in northern Wisconsin using a land surface model. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	24
79	Investigation of Hydrological Variability in West Africa Using Land Surface Models. Journal of Climate, 2005, 18, 3173-3188.	3.2	49
80	Global Consequences of Land Use. Science, 2005, 309, 570-574.	12.6	9,451
81	Land use, land cover, and climate change across the Mississippi Basin: Impacts on selected land and water resources. Geophysical Monograph Series, 2004, , 249-261.	0.1	25
82	Calculation of river discharge and prediction of lake height from satellite radar altimetry: Example for the Lake Chad basin. Water Resources Research, 2004, 40, .	4.2	116
83	Impacts of Climate Variation and Catchment Area on Water Balance and Lake Hydrologic Type in Groundwater-Dominated Systems: A Generic Lake Model. Earth Interactions, 2004, 8, 1-24.	1.5	20
84	Regime Shifts in the Sahara and Sahel: Interactions between Ecological and Climatic Systems in Northern Africa. Ecosystems, 2003, 6, 524-532.	3.4	212
85	Long-term simulations of discharge and floods in the Amazon Basin. Journal of Geophysical Research, 2002, 107, LBA 11-1.	3.3	96
86	Impact of vegetation and preferential source areas on global dust aerosol: Results from a model study. Journal of Geophysical Research, 2002, 107, AAC 14-1-AAC 14-27.	3.3	453
87	El Niño-Southern oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochemical Cycles, 2002, 16, 79-1-79-20.	4.9	162
88	A macroscale hydrological data set of river flow routing parameters for the Amazon Basin. Journal of Geophysical Research, 2002, 107, LBA 6-1.	3.3	17
89	Modeling the impact of hydrological changes on nitrate transport in the Mississippi River Basin from 1955 to 1994. Global Biogeochemical Cycles, 2002, 16, 16-1-16-19.	4.9	119
90	Indirect relationship between surface water budget and wetland extent. Geophysical Research Letters, 2002, 29, 5-1.	4.0	6

#	Article	IF	CITATIONS
91	Comparison of the climate simulated by the CCM3 coupled to two different land-surface models. Climate Dynamics, 2002, 19, 657-669.	3.8	47
92	The water balance of northern Africa during the mid-Holocene: an evaluation of the 6 ka BP PMIP simulations. Climate Dynamics, 2002, 19, 155-166.	3.8	34
93	Simulated Response of the Atmosphere-Ocean System to deforestation in the Indonesian Archipelago. Geophysical Research Letters, 2001, 28, 2081-2084.	4.0	79
94	Human and natural impacts on the water resources of the Lake Chad basin. Journal of Geophysical Research, 2001, 106, 3349-3356.	3. 3	259
95	Land-Ocean-Atmosphere Interactions and Monsoon Climate Change. , 2001, , 73-86.		12
96	Modeling Terrestrial Hydrological Systems at the Continental Scale: Testing the Accuracy of an Atmospheric GCM. Journal of Climate, 2000, 13, 686-704.	3.2	145
97	Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochemical Cycles, 2000, 14, 795-825.	4.9	608
98	Surface water balance of the continental United States, 1963-1995: Regional evaluation of a terrestrial biosphere model and the NCEP/NCAR reanalysis. Journal of Geophysical Research, 2000, 105, 22393-22425.	3.3	69
99	Land surface feedbacks and palaeomonsoons in northern Africa. Geophysical Research Letters, 1998, 25, 3615-3618.	4.0	141
100	A linked global model of terrestrial hydrologic processes: Simulation of modern rivers, lakes, and wetlands. Journal of Geophysical Research, 1998, 103, 8885-8899.	3.3	118
101	Simulating Continental Surface Waters: An Application to Holocene Northern Africa. Journal of Climate, 1997, 10, 1680-1689.	3.2	43
102	Feedbacks between climate and surface water in northern Africa during the middle Holocene. Journal of Geophysical Research, 1997, 102, 11087-11101.	3.3	89
103	Hydrologic budget of a land surface model: A global application. Journal of Geophysical Research, 1996, 101, 16921-16930.	3.3	28
104	The Hydrologic Cycle of Major Continental Drainage and Ocean Basins: A Simulation of the Modern and Mid-Holocene Conditions and a Comparison with Observations. Journal of Climate, 1995, 8, 535-543.	3.2	11
105	Feedbacks between climate and boreal forests during the Holocene epoch. Nature, 1994, 371, 52-54.	27.8	493