Jean-Yves Collot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969589/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth and Planetary Science Letters, 1999, 168, 255-270.	4.4	325
2	The giant Ruatoria debris avalanche on the northern Hikurangi margin, New Zealand: Result of oblique seamount subduction. Journal of Geophysical Research, 2001, 106, 19271-19297.	3.3	178
3	The dammed Hikurangi Trough: a channelâ€fed trench blocked by subducting seamounts and their wake avalanches (New Zealand–France GeodyNZ Project). Basin Research, 1998, 10, 441-468.	2.7	132
4	Strain partitioning in the transition area between oblique subduction and continental collision, Hikurangi margin, New Zealand. Tectonics, 1998, 17, 534-557.	2.8	128
5	From oblique subduction to intra-continental transpression: Structures of the southern Kermadec-Hikurangi margin from multibeam bathymetry, side-scan sonar and seismic reflection. Marine Geophysical Researches, 1996, 18, 357-381.	1.2	116
6	Are rupture zone limits of great subduction earthquakes controlled by upper plate structures? Evidence from multichannel seismic reflection data acquired across the northern Ecuador-southwest Colombia margin. Journal of Geophysical Research, 2004, 109, .	3.3	114
7	Interplate patchiness and subduction-erosion mechanisms: Evidence from depth-migrated seismic images at the central Ecuador convergent margin. Geology, 2006, 34, 997.	4.4	98
8	Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador–south Colombia oceanic margin. Journal of Geophysical Research, 2008, 113,	3.3	89
9	Distribution of discrete seismic asperities and aseismic slip along the Ecuadorian megathrust. Earth and Planetary Science Letters, 2014, 400, 292-301.	4.4	89
10	The Oligocene-Miocene Pacific-Australia plate boundary, south of New Zealand: Evolution from oceanic spreading to strike-slip faulting. Earth and Planetary Science Letters, 1997, 148, 129-139.	4.4	78
11	Subduction initiation at a strike-slip plate boundary: The Cenozoic Pacific-Australian plate boundary, south of New Zealand. Journal of Geophysical Research, 2003, 108, .	3.3	74
12	Nonlinear variations of the physical properties along the southern Ecuador subduction channel: Results from depth-migrated seismic data. Earth and Planetary Science Letters, 2008, 267, 453-467.	4.4	70
13	Plio-Quaternary uplift of the Manta Peninsula and La Plata Island and the subduction of the Carnegie Ridge, central coast of Ecuador. Journal of South American Earth Sciences, 2006, 22, 1-21.	1.4	67
14	Subducted oceanic relief locks the shallow megathrust in central Ecuador. Journal of Geophysical Research: Solid Earth, 2017, 122, 3286-3305.	3.4	66
15	Successive, large massâ€transport deposits in the south Kermadec foreâ€arc basin, New Zealand: The Matakaoa Submarine Instability Complex. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	64
16	Deep structures of the Ecuador convergent margin and the Carnegie Ridge, possible consequence on great earthquakes recurrence interval. Geophysical Research Letters, 2004, 31, .	4.0	62
17	Exploring the Ecuador-Colombia Active Margin and Interplate Seismogenic Zone. Eos, 2002, 83, 185.	0.1	55
18	Toward a dynamic concept of the subduction channel at erosive convergent margins with implications for interplate material transfer. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	54

JEAN-YVES COLLOT

#	Article	IF	CITATIONS
19	Morphostructure of an incipient subduction zone along a transform plate boundary: Puysegur Ridge and Trench. Geology, 1995, 23, 519.	4.4	52
20	Abrupt strike-slip fault to subduction transition: The Alpine Fault-Puysegur Trench connection, New Zealand. Tectonics, 2000, 19, 688-706.	2.8	50
21	Seamount subduction at the North-Ecuadorian convergent margin: Effects on structures, inter-seismic coupling and seismogenesis. Earth and Planetary Science Letters, 2016, 433, 146-158.	4.4	50
22	Forearc structures and tectonic regimes at the oblique subduction zone between the Hikurangi Plateau and the southern Kermadec margin. Journal of Geophysical Research, 1998, 103, 623-650.	3.3	48
23	From strike-slip faulting to oblique subduction: A survey of the Alpine Fault-Puysegur Trench transition, New Zealand, results of cruise Geodynz-sud leg 2. Marine Geophysical Researches, 1996, 18, 383-399.	1.2	45
24	Formation of forearc basins by collision between seamounts and accretionary wedges: An example from the New Hebrides subduction zone. Geology, 1989, 17, 930.	4.4	43
25	Mass-transport deposits in the northern Ecuador subduction trench: Result of frontal erosion over multiple seismic cycles. Earth and Planetary Science Letters, 2010, 296, 89-102.	4.4	39
26	Geology of the d'Entrecasteaux-New Hebrides arc collision zone: results from a deep submersible survey. Tectonophysics, 1992, 212, 213-241.	2.2	36
27	Fields of multi-kilometer scale sub-circular depressions in the Carnegie Ridge sedimentary blanket: Effect of underwater carbonate dissolution?. Marine Geology, 2005, 216, 205-219.	2.1	32
28	The South Ecuador subduction channel: Evidence for a dynamic mega-shear zone from 2D fine-scale seismic reflection imaging and implications for material transfer. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	32
29	Dynamics of giant mass transport in deep submarine environments: the Matakaoa Debris Flow, New Zealand. Basin Research, 2013, 25, 471-488.	2.7	32
30	Chronostratigraphy and tectonic deformation of the North Ecuadorian–South Colombian offshore Manglares forearc basin. Marine Geology, 2008, 255, 30-44.	2.1	31
31	Late Quaternary geomorphologic evolution of submarine canyons as a marker of active deformation on convergent margins: The example of the South Colombian margin. Marine Geology, 2012, 315-318, 77-97.	2.1	30
32	Thermal segmentation along the N. Ecuador–S. Colombia margin (1–4°N): Prominent influence of sedimentation rate in the trench. Earth and Planetary Science Letters, 2008, 272, 296-308.	4.4	26
33	The collision zone between the North d'Entrecasteaux Ridge and the New Hebrides Island Arc: 1. Sea Beam morphology and shallow structure. Journal of Geophysical Research, 1991, 96, 4457-4478.	3.3	25
34	Earthquake-triggered deposits in the subduction trench of the north Ecuador/south Colombia margin and their implication for paleoseismology. Marine Geology, 2017, 384, 47-62.	2.1	25
35	The collision zone between the North d'Entrecasteaux Ridge and the New Hebrides Island Arc: 2. Structure from multichannel seismic data. Journal of Geophysical Research, 1991, 96, 4479-4495.	3.3	23
36	Thermal regime from bottom simulating reflectors along the north Ecuador-south Colombia margin: Relation to margin segmentation and great subduction earthquakes. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	23

JEAN-YVES COLLOT

#	Article	IF	CITATIONS
37	Subduction of the Bougainville seamount (Vanuatu): mechanical and geodynamic implications. Tectonophysics, 1988, 149, 111-119.	2.2	22
38	Seafloor margin map helps in understanding subduction earthquakes. Eos, 2005, 86, 463.	0.1	22
39	The Rapuhia Scarp (northern Hikurangi Plateau) — its nature and subduction effects on the Kermadec Trench. Tectonophysics, 2000, 328, 269-295.	2.2	21
40	Continental slope reconstruction after a giant mass failure, the example of the Matakaoa Margin, New Zealand. Marine Geology, 2010, 268, 67-84.	2.1	21
41	Joint inversion of multichannel seismic reflection and wideâ€angle seismic data: Improved imaging and refined velocity model of the crustal structure of the north Ecuador–south Colombia convergent margin. Journal of Geophysical Research, 2009, 114, .	3.3	20
42	Fracture zone subduction and reactivation across the Puysegur ridge/trench system, southern New Zealand. Journal of Geophysical Research, 1998, 103, 7293-7313.	3.3	18
43	Joint ray + Born least-squares migration and simulated annealing optimization for target-oriented quantitative seismic imaging. Geophysics, 2011, 76, R23-R42.	2.6	16
44	Structure of the Malpelo Ridge (Colombia) from seismic and gravity modelling. Marine Geophysical Researches, 2006, 27, 289-300.	1.2	15
45	Seismological study of the central Ecuadorian margin: Evidence of upper plate deformation. Journal of South American Earth Sciences, 2011, 31, 139-152.	1.4	15
46	Evolution of the Ecuador offshore nonaccretionary-type forearc basin and margin segmentation. Tectonophysics, 2020, 781, 228374.	2.2	15
47	The Esmeraldas Canyon: A Helpful Marker of the Plioceneâ€Pleistocene Tectonic Deformation of the North Ecuadorâ€Southwest Colombia Convergent Margin. Tectonics, 2019, 38, 3140-3166.	2.8	14
48	Possible causes for structural variation where the New Hebrides island arc and the d'Entrecasteaux zone collide. Geology, 1986, 14, 951.	4.4	13
49	Structure of the collision zone between Bougainville Guyot and the accretionary wedge of the New Hebrides Island Arc, southwest Pacific. Tectonics, 1991, 10, 887-903.	2.8	12
50	Influence of preexisting backstop structure on oblique tectonic accretion: The Fiordland margin (southwestern New Zealand). Geology, 1996, 24, 1045.	4.4	10
51	The tsunami signature on a submerged promontory: the case study of the Atacames Promontory, Ecuador. Geophysical Journal International, 2011, 184, 680-688.	2.4	8
52	Tsunami mapping in the Gulf of Guayaquil, Ecuador, due to local seismicity. Marine Geophysical Researches, 2014, 35, 361-378.	1.2	7
53	Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates. Pure and Applied Geophysics, 2016, 173, 3291-3303.	1.9	2
54	Flare-Shaped Acoustic Anomalies in the Water Column Along the Ecuadorian Margin: Relationship with Active Tectonics and Gas Hydrates. Pageoph Topical Volumes, 2016, , 3291-3303.	0.2	0