
Stian Svelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969444/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie - International Edition, 2012, 51, 5810-5831.	13.8	1,476
2	Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016, 28, 3749-3761.	6.7	933
3	Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species. Journal of Catalysis, 2007, 249, 195-207.	6.2	893
4	Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014, 26, 4068-4071.	6.7	634
5	Conversion of Methanol into Hydrocarbons over Zeolite H-ZSM-5:Â Ethene Formation Is Mechanistically Separated from the Formation of Higher Alkenes. Journal of the American Chemical Society, 2006, 128, 14770-14771.	13.7	603
6	Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A: General, 2008, 345, 43-50.	4.3	433
7	Product shape selectivity dominates the Methanol-to-Olefins (MTO) reaction over H-SAPO-34 catalysts. Journal of Catalysis, 2009, 264, 77-87.	6.2	344
8	Post-synthetic modification of the metal–organic framework compound UiO-66. Journal of Materials Chemistry, 2010, 20, 9848.	6.7	340
9	The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. Chemical Society Reviews, 2015, 44, 7155-7176.	38.1	320
10	Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 5370-5372.	3.0	306
11	Quantum Chemical Modeling of Zeolite-Catalyzed Methylation Reactions: Toward Chemical Accuracy for Barriers. Journal of the American Chemical Society, 2009, 131, 816-825.	13.7	288
12	Methane to Methanol: Structure–Activity Relationships for Cu-CHA. Journal of the American Chemical Society, 2017, 139, 14961-14975.	13.7	277
13	Assessing the acid properties of desilicated ZSM-5 by FTIR using CO and 2,4,6-trimethylpyridine (collidine) as molecular probes. Applied Catalysis A: General, 2009, 356, 23-30.	4.3	249
14	Mechanistic insight into the methanol-to-hydrocarbons reaction. Catalysis Today, 2005, 106, 108-111.	4.4	237
15	The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catalysis Today, 2009, 142, 90-97.	4.4	219
16	The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 2009, 52, 218-228.	2.8	216
17	Cu-CHA – a model system for applied selective redox catalysis. Chemical Society Reviews, 2018, 47, 8097-8133.	38.1	215
18	Shape Selectivity in the Conversion of Methanol to Hydrocarbons: The Catalytic Performance of One-Dimensional 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-48, and EU-1. ACS Catalysis, 2012, 2, 26-37.	11.2	207

#	Article	IF	CITATIONS
19	Conversion of Methanol to Alkenes over Medium- and Large-Pore Acidic Zeolites:  Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity. Journal of Physical Chemistry C, 2007, 111, 17981-17984.	3.1	179
20	The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. Journal of the American Chemical Society, 2018, 140, 15270-15278.	13.7	177
21	Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. Journal of Physical Chemistry C, 2017, 121, 9312-9324.	3.1	176
22	Functionalizing the Defects: Postsynthetic Ligand Exchange in the Metal Organic Framework UiO-66. Chemistry of Materials, 2016, 28, 7190-7193.	6.7	170
23	Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. Journal of Catalysis, 2013, 307, 62-73.	6.2	169
24	Kinetic studies of zeolite-catalyzed methylation reactions1. Coreaction of [12C]ethene and [13C]methanol. Journal of Catalysis, 2004, 224, 115-123.	6.2	160
25	Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol. Journal of Catalysis, 2005, 234, 385-400.	6.2	151
26	Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH. Microporous and Mesoporous Materials, 2010, 132, 384-394.	4.4	150
27	Synthesis and Characterization of Amine-Functionalized Mixed-Ligand Metal–Organic Frameworks of UiO-66 Topology. Inorganic Chemistry, 2014, 53, 9509-9515.	4.0	148
28	In Situ Infrared Spectroscopic and Gravimetric Characterisation of the Solvent Removal and Dehydroxylation of the Metal Organic Frameworks UiO-66 and UiO-67. Topics in Catalysis, 2013, 56, 770-782.	2.8	145
29	Selectivity control through fundamental mechanistic insight in the conversion of methanol to hydrocarbons over zeolites. Microporous and Mesoporous Materials, 2010, 136, 33-41.	4.4	141
30	Methanol to hydrocarbons over large cavity zeolites: Toward a unified description of catalyst deactivation and the reaction mechanism. Journal of Catalysis, 2010, 275, 170-180.	6.2	141
31	Hydrogenation of CO ₂ to Methanol by Pt Nanoparticles Encapsulated in UiO-67: Deciphering the Role of the Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 999-1009.	13.7	141
32	Conversion of methanol over 10-ring zeolites with differing volumes at channel intersections: comparison of TNU-9, IM-5, ZSM-11 and ZSM-5. Physical Chemistry Chemical Physics, 2011, 13, 2539-2549.	2.8	137
33	Methanol-to-hydrocarbons conversion: The alkene methylation pathway. Journal of Catalysis, 2014, 314, 159-169.	6.2	136
34	Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts. Journal of Catalysis, 2012, 292, 201-212.	6.2	126
35	High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. Journal of Catalysis, 2018, 362, 146-163.	6.2	120
36	Mechanistic Aspects of the Zeolite Catalyzed Methylation of Alkenes and Aromatics with Methanol: A Review. Topics in Catalysis, 2011, 54, 897-906.	2.8	109

#	Article	IF	CITATIONS
37	New insights into catalyst deactivation and product distribution of zeolites in the methanol-to-hydrocarbons (MTH) reaction with methanol and dimethyl ether feeds. Catalysis Science and Technology, 2017, 7, 2700-2716.	4.1	106
38	Probing Reactive Platinum Sites in UiO-67 Zirconium Metal–Organic Frameworks. Chemistry of Materials, 2015, 27, 1042-1056.	6.7	105
39	Shapeâ€Selective Conversion of Methanol to Hydrocarbons Over 10â€Ring Unidirectionalâ€Channel Acidic Hâ€ZSMâ€22. ChemCatChem, 2009, 1, 78-81.	3.7	104
40	H-SAPO-5 as methanol-to-olefins (MTO) model catalyst: Towards elucidating the effects of acid strength. Journal of Catalysis, 2013, 298, 94-101.	6.2	104
41	How defects and crystal morphology control the effects of desilication. Catalysis Today, 2011, 168, 38-47.	4.4	103
42	The influence of catalyst acid strength on the methanol to hydrocarbons (MTH) reaction. Catalysis Today, 2013, 215, 216-223.	4.4	103
43	Hydrogen Transfer versus Methylation: On the Genesis of Aromatics Formation in the Methanol-To-Hydrocarbons Reaction over H-ZSM-5. ACS Catalysis, 2017, 7, 5773-5780.	11.2	102
44	Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations. Angewandte Chemie - International Edition, 2012, 51, 652-655.	13.8	101
45	Methylation of Alkenes and Methylbenzenes by Dimethyl Ether or Methanol on Acidic Zeolites. Journal of Physical Chemistry B, 2005, 109, 12874-12878.	2.6	98
46	The methyl halide to hydrocarbon reaction over H-SAPO-34. Journal of Catalysis, 2006, 241, 243-254.	6.2	91
47	Computational exploration of newly synthesized zirconium metal–organic frameworks UiO-66, -67, -68 and analogues. Journal of Materials Chemistry C, 2014, 2, 7111-7125.	5.5	89
48	Conversion of Methanol to Hydrocarbons: The Reactions of the Heptamethylbenzenium Cation over Zeolite H-Beta. Catalysis Letters, 2004, 93, 37-40.	2.6	86
49	Single parameter synthesis of high silica CHA zeolites from fluoride media. Microporous and Mesoporous Materials, 2012, 153, 94-99.	4.4	83
50	Structure–deactivation relationships in zeolites during the methanol–to-hydrocarbons reaction: Complementary assessments of the coke content. Journal of Catalysis, 2017, 351, 33-48.	6.2	82
51	Theoretical Investigation of the Dimerization of Linear Alkenes Catalyzed by Acidic Zeolites. Journal of Physical Chemistry B, 2004, 108, 2953-2962.	2.6	78
52	A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5. ACS Catalysis, 2017, 7, 8235-8246.	11.2	77
53	Single-Event Microkinetics for Methanol to Olefins on H-ZSM-5. Industrial & Engineering Chemistry Research, 2013, 52, 1491-1507.	3.7	73
54	A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. Journal of Physical Chemistry B, 2003, 107, 9281-9289.	2.6	71

#	Article	IF	CITATIONS
55	Kinetic modeling of deactivation profiles in the methanol-to-hydrocarbons (MTH) reaction: A combined autocatalytic–hydrocarbon pool approach. Journal of Catalysis, 2013, 308, 122-130.	6.2	71
56	Benzene co-reaction with methanol and dimethyl ether over zeolite and zeotype catalysts: Evidence of parallel reaction paths to toluene and diphenylmethane. Journal of Catalysis, 2017, 349, 136-148.	6.2	70
57	Kinetics of Zeolite Dealumination: Insights from H-SSZ-13. ACS Catalysis, 2015, 5, 7131-7139.	11.2	69
58	Influence of Defects and H ₂ O on the Hydrogenation of CO ₂ to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 17105-17118.	13.7	68
59	Product yield in methanol conversion over ZSM-5 is predominantly independent of coke content. Microporous and Mesoporous Materials, 2012, 164, 190-198.	4.4	66
60	Morphology-induced shape selectivity in zeolite catalysis. Journal of Catalysis, 2015, 327, 22-32.	6.2	64
61	Mechanistic Comparison of the Dealumination in SSZ-13 and the Desilication in SAPO-34. Journal of Physical Chemistry C, 2013, 117, 13442-13451.	3.1	62
62	A Theoretical Investigation of the Methylation of Methylbenzenes and Alkenes by Halomethanes over Acidic Zeolites. Journal of Physical Chemistry B, 2003, 107, 5251-5260.	2.6	61
63	In Situ FT-IR Mechanistic Investigations of the Zeolite Catalyzed Methylation of Benzene with Methanol: H-ZSM-5 versus H-beta. Topics in Catalysis, 2011, 54, 1293-1301.	2.8	60
64	Methane conversion to light olefins—How does the methyl halide route differ from the methanol to olefins (MTO) route?. Catalysis Today, 2011, 171, 211-220.	4.4	53
65	Probing the surface of nanosheet H-ZSM-5 with FTIR spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 13363.	2.8	53
66	On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion. ACS Catalysis, 2019, 9, 365-375.	11.2	53
67	Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2013, 307, 185-193.	6.2	51
68	How zeolitic acid strength and composition alter the reactivity of alkenes and aromatics towards methanol. Journal of Catalysis, 2015, 328, 186-196.	6.2	49
69	CHA/AEI intergrowth materials as catalysts for the Methanol-to-Olefins process. Applied Catalysis A: General, 2015, 505, 1-7.	4.3	46
70	Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol. ChemCatChem, 2019, 11, 5022-5026.	3.7	45
71	Synthesis of mesoporous ZSM-5 zeolite encapsulated in an ultrathin protective shell of silicalite-1 for MTH conversion. Microporous and Mesoporous Materials, 2020, 292, 109730.	4.4	44
72	Collective action of water molecules in zeolite dealumination. Catalysis Science and Technology, 2019, 9, 3721-3725.	4.1	43

#	Article	IF	CITATIONS
73	Time- and space-resolved study of the methanol to hydrocarbons (MTH) reaction – influence of zeolite topology on axial deactivation patterns. Faraday Discussions, 2017, 197, 421-446.	3.2	39
74	Intermediates in the Methanol-to-hydrocarbons (MTH) Reaction: A Gas Phase Study of the Unimolecular Reactivity of Multiply Methylated Benzenium Cations. Catalysis Letters, 2006, 109, 25-35.	2.6	37
75	EXAFS wavelet transform analysis of Cu-MOR zeolites for the direct methane to methanol conversion. Physical Chemistry Chemical Physics, 2020, 22, 18950-18963.	2.8	35
76	Synthesis of Titanium Chabazite: A New Shape Selective Oxidation Catalyst with Small Pore Openings and Application in the Production of Methyl Formate from Methanol. ChemCatChem, 2011, 3, 1869-1871.	3.7	34
77	A quantum mechanically guided view of Cd-MOF-5 from formation energy, chemical bonding, electronic structure, and optical properties. Microporous and Mesoporous Materials, 2013, 175, 50-58.	4.4	34
78	Diphenylmethane-Mediated Transmethylation of Methylbenzenes over H-Zeolites. Journal of the American Chemical Society, 2006, 128, 5618-5619.	13.7	33
79	Unit cell thick nanosheets of zeolite H-ZSM-5: Structure and activity. Topics in Catalysis, 2013, 56, 558-566.	2.8	33
80	Mechanism of Si Island Formation in SAPO-34. Journal of Physical Chemistry C, 2015, 119, 2086-2095.	3.1	33
81	Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction. Journal of Physical Chemistry Letters, 2018, 9, 1324-1328.	4.6	33
82	Chapter 6. Shape selectivity in zeolite catalysis. The Methanol to Hydrocarbons (MTH) reaction. Catalysis, 0, , 179-217.	1.0	32
83	Does an Ethene/Benzenium Ion Complex Exist? A Discrepancy between B3LYP and MP2 Predictions. Journal of Physical Chemistry A, 2008, 112, 6399-6400.	2.5	31
84	The conversion of chloromethane to light olefins over SAPO-34: The influence of dichloromethane addition. Applied Catalysis A: General, 2009, 367, 23-31.	4.3	31
85	Conversion of methanol to hydrocarbons over zeolite ZSM-23 (MTT): exceptional effects of particle size on catalyst lifetime. Chemical Communications, 2017, 53, 6816-6819.	4.1	31
86	Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions. Surface Science, 2016, 648, 141-149.	1.9	30
87	Understanding and Optimizing the Performance of Cuâ€FER for The Direct CH ₄ to CH ₃ OH Conversion. ChemCatChem, 2019, 11, 621-627.	3.7	29
88	Finding the active species: The conversion of methanol to aromatics over Zn-ZSM-5/alumina shaped catalysts. Journal of Catalysis, 2021, 394, 416-428.	6.2	29
89	Understanding zeolite-catalyzed benzene methylation reactions by methanol and dimethyl ether at operating conditions from first principle microkinetic modeling and experiments. Catalysis Today, 2018, 312, 35-43.	4.4	28
90	Theoretical Study of Ethylbenzenium Ions: The Mechanism for Splitting Off Ethene, and the Formation of a π Complex of Ethene and the Benzenium Ion. Journal of Physical Chemistry A, 2009, 113, 917-923.	2.5	27

#	Article	IF	CITATIONS
91	Enhanced Catalyst Performance of Zeolite SSZ-13 in the Methanol to Olefin Reaction after Neutron Irradiation. Journal of Physical Chemistry C, 2011, 115, 6521-6530.	3.1	26
92	The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study. Catalysis Today, 2019, 336, 99-108.	4.4	26
93	Conversion of methanol to hydrocarbons: Hints to rational catalyst design from fundamental mechanistic studies on H-ZSM-5. Studies in Surface Science and Catalysis, 2007, , 463-468.	1.5	24
94	Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane. Microporous and Mesoporous Materials, 2018, 265, 112-122.	4.4	24
95	Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23. Catalysis Today, 2013, 215, 224-232.	4.4	23
96	Desilication of SAPO-34: Reaction Mechanisms from Periodic DFT Calculations. Journal of Physical Chemistry C, 2015, 119, 2073-2085.	3.1	23
97	Influence of post-synthetic modifications on the composition, acidity and textural properties of ZSM-22 zeolite. Catalysis Today, 2018, 299, 120-134.	4.4	23
98	Thermochemistry of Organic Reactions in Microporous Oxides by Atomistic Simulations: Benchmarking against Periodic B3LYP. Journal of Physical Chemistry A, 2010, 114, 7391-7397.	2.5	21
99	A Systematic Study of Isomorphically Substituted Hâ€MAlPOâ€5 Materials for the Methanolâ€ŧoâ€Hydrocarbons Reaction. ChemPhysChem, 2018, 19, 484-495.	2.1	21
100	Impact of post-synthetic treatments on unidirectional H-ZSM-22 zeolite catalyst: Towards improved clean MTG catalytic process. Catalysis Today, 2018, 299, 135-145.	4.4	21
101	Co-conversion of methanol and light alkenes over acidic zeolite catalyst H-ZSM-22: Simulated recycle of non-gasoline range products. Applied Catalysis A: General, 2015, 494, 68-76.	4.3	19
102	Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental ²⁷ Al NMR Study. Journal of Physical Chemistry C, 2019, 123, 7831-7844.	3.1	19
103	Zeolite morphology and catalyst performance: conversion of methanol to hydrocarbons over offretite. Catalysis Science and Technology, 2017, 7, 5435-5447.	4.1	18
104	Topology-dependent hydrocarbon transformations in the methanol-to-hydrocarbons reaction studied by <i>operando</i> UV-Raman spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 26580-26590.	2.8	18
105	Mechanistic Proposal for the Zeolite Catalyzed Methylation of Aromatic Compounds. Journal of Physical Chemistry A, 2010, 114, 12548-12554.	2.5	16
106	Methanol Conversion to Hydrocarbons (MTH) Over H-ITQ-13 (ITH) Zeolite. Topics in Catalysis, 2014, 57, 143-158.	2.8	16
107	Operando UV-Raman study of the methanol to olefins reaction over SAPO-34: Spatiotemporal evolution monitored by different reactor approaches. Catalysis Today, 2019, 336, 203-209.	4.4	16
108	Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol. Catalysts, 2020, 10, 191.	3.5	16

#	Article	IF	CITATIONS
109	Copper Pairing in the Mordenite Framework as a Function of the Cu ^I /Cu ^{II} Speciation. Angewandte Chemie - International Edition, 2021, 60, 25891-25896.	13.8	16
110	Optical Investigation of the Intergrowth Structure and Accessibility of BrÃ,nsted Acid Sites in Etched SSZ-13 Zeolite Crystals by Confocal Fluorescence Microscopyâ€. Langmuir, 2010, 26, 16510-16516.	3.5	14
111	Influence of Cu-speciation in mordenite on direct methane to methanol conversion: Multi-Technique characterization and comparison with NH3 selective catalytic reduction of NOx. Catalysis Today, 2021, 369, 105-111.	4.4	14
112	Mapping the coke formation within a zeolite catalyst extrudate in space and time by operando computed X-ray diffraction tomography. Journal of Catalysis, 2021, 401, 1-6.	6.2	14
113	Titration of Cu(l) Sites in Cu-ZSM-5 by Volumetric CO Adsorption. ACS Applied Materials & Interfaces, 2022, 14, 21059-21068.	8.0	12
114	Conclusive Evidence for Two Unimolecular Pathways to Zeoliteâ€Catalyzed Deâ€alkylation of the Heptamethylbenzenium Cation. ChemCatChem, 2015, 7, 4143-4147.	3.7	11
115	Synthesis–Structure–Activity Relationship in Cu-MOR for Partial Methane Oxidation: Al Siting via Inorganic Structure-Directing Agents. ACS Catalysis, 2022, 12, 2166-2177.	11.2	11
116	A XAFS study of the local environment and reactivity of Pt- sites in functionalized UiO-67 MOFs. Journal of Physics: Conference Series, 2016, 712, 012125.	0.4	10
117	Acidity effect on benzene methylation kinetics over substituted H-MeAlPO-5 catalysts. Journal of Catalysis, 2021, 404, 594-606.	6.2	10
118	Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy. Topics in Catalysis, 2019, 62, 712-723.	2.8	9
119	Assessing the surface sites of the large pore 3-dimensional microporous material H-ITQ-7 using FT-IR spectroscopy and molecular probes. Microporous and Mesoporous Materials, 2011, 141, 146-156.	4.4	8
120	Synthesis of ZSM-23 (MTT) zeolites with different crystal morphology and intergrowths: effects on the catalytic performance in the conversion of methanol to hydrocarbons. Catalysis Science and Technology, 2019, 9, 6782-6792.	4.1	7
121	Spectroscopic and catalytic characterization of extra large pore zeotype H-ITQ-33. Microporous and Mesoporous Materials, 2012, 151, 424-433.	4.4	5
122	From Catalytic Test Reaction to Modern Chemical Descriptors in Zeolite Catalysis Research. Chemie-Ingenieur-Technik, 2021, 93, 902-915.	0.8	5
123	Infrared Spectroscopic Investigation of the Acidity and Availability of the Surface Hydroxyls of Three-Dimensional 12-Ring Zeotype H-ITQ-7. Journal of Physical Chemistry C, 2011, 115, 12090-12094.	3.1	0
124	Correction to "Mechanism of Si Island Formation in SAPO-34― Journal of Physical Chemistry C, 2015, 119, 20782-20782.	3.1	0
125	Understanding and Design Catalysts from Molecular to Material Scale: One of the Five Grand-Challenges for Catalysis at the 13th European Congress on Catalysis. Topics in Catalysis, 2018, 61, 1383-1384.	2.8	0
126	Copper pairing in the mordenite framework as a function of the Cu(I)/Cu(II) speciation. Angewandte Chemie, 0, , .	2.0	0

#	Article	IF	CITATIONS
127	Morphology Controlled Lifetime and Selectivity in Zeolite Catalysis. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C737-C737.	0.1	Ο