
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969290/publications.pdf

Version: 2024-02-01



LOSE RAMON SARASUA

| #  | Article                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Crystallization and Melting Behavior of Polylactides. Macromolecules, 1998, 31, 3895-3905.                                                                                                 | 2.2  | 498       |
| 2  | Crystallization, morphology, and mechanical behavior of polylactide/poly(É›-caprolactone) blends.<br>Polymer Engineering and Science, 2006, 46, 1299-1308.                                 | 1.5  | 264       |
| 3  | Stereoselective Crystallization and Specific Interactions in Polylactides. Macromolecules, 2005, 38, 8362-8371.                                                                            | 2.2  | 227       |
| 4  | Infrared Spectrum of Poly(l-lactide):  Application to Crystallinity Studies. Macromolecules, 2006, 39,<br>9291-9301.                                                                       | 2.2  | 195       |
| 5  | Crystallinity and mechanical properties of optically pure polylactides and their blends. Polymer<br>Engineering and Science, 2005, 45, 745-753.                                            | 1.5  | 178       |
| 6  | Synthesis, structure and properties of poly(L-lactide-co–caprolactone) statistical copolymers.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 100-112.            | 1.5  | 162       |
| 7  | Miscibility and Specific Interactions in Blends of Poly(l-Lactide) with Poly(Vinylphenol).<br>Macromolecules, 2005, 38, 1207-1215.                                                         | 2.2  | 128       |
| 8  | The mechanical behaviour of PEEK short fibre composites. Journal of Materials Science, 1995, 30, 3501-3508.                                                                                | 1.7  | 121       |
| 9  | Conformational Behavior of Poly(l-lactide) Studied by Infrared Spectroscopy. Journal of Physical<br>Chemistry B, 2006, 110, 5790-5800.                                                     | 1.2  | 118       |
| 10 | Glass transition behavior and dynamic fragility in polylactides containing mobile and rigid amorphous fractions. Polymer, 2008, 49, 4427-4432.                                             | 1.8  | 110       |
| 11 | Polymer capsules as micro-/nanoreactors for therapeutic applications: Current strategies to control membrane permeability. Progress in Materials Science, 2017, 90, 325-357.               | 16.0 | 91        |
| 12 | Properties of Aged Montmorilloniteâ^'Wheat Gluten Composite Films. Journal of Agricultural and<br>Food Chemistry, 2006, 54, 1283-1288.                                                     | 2.4  | 82        |
| 13 | Phase-structure and mechanical properties of isothermally melt-and cold-crystallized poly (L-lactide).<br>Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 242-251.   | 1.5  | 79        |
| 14 | Molecular dynamics modelling for the analysis and prediction of miscibility in polylactide/polyvinilphenol blends. Polymer, 2010, 51, 4431-4438.                                           | 1.8  | 73        |
| 15 | A PALS Contribution to the Supramolecular Structure of Poly( <scp>l</scp> -lactide). Macromolecules, 2010, 43, 4698-4707.                                                                  | 2.2  | 73        |
| 16 | Nano- and microstructural effects on thermal properties of poly (l-lactide)/multi-wall carbon nanotube composites. Polymer, 2012, 53, 2412-2421.                                           | 1.8  | 72        |
| 17 | Analysis of the Câ•O Stretching Band of the α-Crystal of Poly( <scp>I</scp> -lactide). Macromolecules, 2009, 42, 5717-5727.                                                                | 2.2  | 62        |
| 18 | A new approach to hydrophobic and water-resistant<br>poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. Journal of<br>Materials Chemistry, 2008, 18, 5354. | 6.7  | 61        |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Influence of the Rigid Amorphous Fraction and Crystallinity on Polylactide Transport Properties.<br>Macromolecules, 2018, 51, 3923-3931.                                                                      | 2.2 | 61        |
| 20 | Synthesis and characterization of poly (l-lactide/l̃µ-caprolactone) statistical copolymers with well resolved chain microstructures. Polymer, 2013, 54, 2621-2631.                                            | 1.8 | 58        |
| 21 | Effects of chain microstructures and derived crystallization capability on hydrolytic degradation of poly(l-lactide/ε-caprolactone) copolymers. Polymer Degradation and Stability, 2013, 98, 481-489.         | 2.7 | 56        |
| 22 | Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomaterialia, 2018, 67, 21-31.                                                                                                 | 4.1 | 55        |
| 23 | Crystallization and thermal behaviour of optically pure polylactides and their blends. Journal of<br>Materials Science, 2005, 40, 1855-1862.                                                                  | 1.7 | 53        |
| 24 | Direct Measurement of the Enthalpy of Mixing in Miscible Blends of Poly(dl-lactide) with Poly(vinylphenol). Macromolecules, 2005, 38, 9221-9228.                                                              | 2.2 | 53        |
| 25 | Electrochemical synthesis of poly(3,4â€ethylenedioxythiophene) nanotube arrays using ZnO templates.<br>Journal of Polymer Science Part A, 2010, 48, 4648-4653.                                                | 2.5 | 51        |
|    | Effects of chain microstructures on mechanical behavior and aging of a poly(L-lactide-co- <mml:math) (<="" etqq0="" td="" tj=""><td>0</td><td></td></mml:math)>                                               | 0   |           |
| 26 | thermoplastic-elastomer. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 12, 29-38.                                                                                                         | 1.5 | 51        |
| 27 | Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles. Polymer Degradation and Stability, 2014, 110, 121-128.                  | 2.7 | 51        |
| 28 | Ultra-fast laser microprocessing of medical polymers for cell engineering applications. Materials<br>Science and Engineering C, 2014, 37, 241-250.                                                            | 3.8 | 49        |
| 29 | Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polymer International, 2019, 68, 125-133.              | 1.6 | 49        |
| 30 | Biocompatible Poly( <scp>L</scp> â€lactide)/MWCNT Nanocomposites: Morphological Characterization,<br>Electrical Properties, and Stem Cell Interaction. Macromolecular Bioscience, 2012, 12, 870-881.          | 2.1 | 48        |
| 31 | Crystallinity assessment and in vitro cytotoxicity of polylactide scaffolds for biomedical applications. Journal of Materials Science: Materials in Medicine, 2011, 22, 2513-2523.                            | 1.7 | 47        |
| 32 | Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties. Carbohydrate Polymers, 2014, 103, 267-273.                                                | 5.1 | 47        |
| 33 | Computational Bench Testing to Evaluate the Short-Term Mechanical Performance of a Polymeric Stent. Cardiovascular Engineering and Technology, 2015, 6, 519-532.                                              | 0.7 | 44        |
| 34 | Influence of the geometrical properties of the carbon nanotubes on the interfacial behavior of<br>epoxy/CNT composites: A molecular modelling approach. Computational Materials Science, 2013, 79,<br>99-104. | 1.4 | 40        |
| 35 | Effects of Polydopamine Functionalization on Boron Nitride Nanotube Dispersion and Cytocompatibility. Bioconjugate Chemistry, 2015, 26, 2025-2037.                                                            | 1.8 | 40        |
| 36 | Functionalised collagen spheres reduce H2O2 mediated apoptosis by scavenging overexpressed ROS.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2397-2405.                                  | 1.7 | 38        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine, 2016, 11, 2547-2563.                                                                                       | 1.7 | 37        |
| 38 | A new generation of poly(lactide/ε aprolactone) polymeric biomaterials for application in the medical<br>field. Journal of Biomedical Materials Research - Part A, 2014, 102, 3573-3584.                                                           | 2.1 | 35        |
| 39 | Molecular dynamics study of the influence of functionalization on the elastic properties of single and multiwall carbon nanotubes. Computational Materials Science, 2011, 50, 3417-3424.                                                           | 1.4 | 34        |
| 40 | Polymerized ionic liquid functionalized multi-walled carbon nanotubes/polyetherimide composites.<br>European Polymer Journal, 2013, 49, 3770-3777.                                                                                                 | 2.6 | 34        |
| 41 | From implantation to degradation — are poly (l-lactide)/multiwall carbon nanotube composite<br>materials really cytocompatible?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10,<br>e1041-e1051.                                    | 1.7 | 34        |
| 42 | Cracking in polylactide spherulites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3308-3315.                                                                                                                                     | 2.4 | 33        |
| 43 | Improvement of toughness by stereocomplex crystal formation in optically pure polylactides of high molecular weight. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 219-225.                                                | 1.5 | 33        |
| 44 | An academic, clinical and industrial update on electrospun, additive manufactured and imprinted medical devices. Expert Review of Medical Devices, 2015, 12, 601-612.                                                                              | 1.4 | 33        |
| 45 | Predicting miscibility in polymer blends using the Bagley plot: Blends with poly(ethylene oxide).<br>Polymer, 2017, 113, 295-309.                                                                                                                  | 1.8 | 33        |
| 46 | Advances and Perspectives in Dental Pulp Stem Cell Based Neuroregeneration Therapies. International<br>Journal of Molecular Sciences, 2021, 22, 3546.                                                                                              | 1.8 | 32        |
| 47 | Effects of repeat unit sequence distribution and residual catalyst on thermal degradation of<br>poly(l-lactide/Îμ-caprolactone) statistical copolymers. Polymer Degradation and Stability, 2013, 98,<br>1293-1299.                                 | 2.7 | 30        |
| 48 | Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters.<br>Polymer Degradation and Stability, 2013, 98, 751-758.                                                                                           | 2.7 | 30        |
| 49 | Poly(ethylene oxide)- <i>b</i> -poly( <scp> </scp> -lactide) Diblock Copolymer/Carbon Nanotube-Based<br>Nanocomposites: LiCl as Supramolecular Structure-Directing Agent. Biomacromolecules, 2011, 12,<br>4086-4094.                               | 2.6 | 29        |
| 50 | In vitro degradation studies and mechanical behavior of poly(Îμ-caprolactone-co-δ-valerolactone) and<br>poly(Îμ-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. European<br>Polymer Journal, 2015, 71, 585-595. | 2.6 | 28        |
| 51 | High toughness biodegradable radiopaque composites based on polylactide and barium sulphate.<br>European Polymer Journal, 2015, 73, 88-93.                                                                                                         | 2.6 | 27        |
| 52 | Synthesis and characterization of Ϊ‰-pentadecalactone-co-ε-decalactone copolymers: Evaluation of thermal, mechanical and biodegradation properties. Polymer, 2015, 81, 12-22.                                                                      | 1.8 | 27        |
| 53 | Effects of thermal history on mechanical behavior of PEEK and its short-fiber composites. Polymer<br>Composites, 1996, 17, 468-477.                                                                                                                | 2.3 | 26        |
| 54 | Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers.<br>Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 209-219.                                                                 | 1.5 | 26        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Design, Degradation Mechanism and Longâ€Term Cytotoxicity of Poly( <scp>l</scp> â€lactide) and<br>Poly(Lactideâ€coâ€iµâ€Caprolactone) Terpolymer Film and Airâ€Spun Nanofiber Scaffold. Macromolecular<br>Bioscience, 2015, 15, 1392-1410.      | 2.1 | 25        |
| 56 | Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response. Journal of Applied Physics, 2011, 110, 094902.                                                                                                   | 1.1 | 24        |
| 57 | Crystallization and its effect on the mechanical properties of a medium chain length<br>polyhydroxyalkanoate. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 87-94.                                                      | 1.5 | 24        |
| 58 | Tougher biodegradable polylactide system for bone fracture fixations: Miscibility study, phase morphology and mechanical properties. European Polymer Journal, 2018, 98, 411-419.                                                               | 2.6 | 24        |
| 59 | Polylactide stereocomplex crystallization prompted by multiwall carbon nanotubes. Journal of Applied Polymer Science, 2013, 130, 4327-4337.                                                                                                     | 1.3 | 23        |
| 60 | Compatibilization through Specific Interactions and Dynamic Fragility in<br>Poly( <scp>D</scp> , <scp>L</scp> â€lactide)/Polystyrene Blends. Macromolecular Chemistry and Physics,<br>2008, 209, 2423-2433.                                     | 1.1 | 22        |
| 61 | InÂvitro degradation of poly(lactide/δ-valerolactone) copolymers. Polymer Degradation and Stability, 2015, 112, 104-116.                                                                                                                        | 2.7 | 22        |
| 62 | Ethylene brassylate-co-δ-hexalactone biobased polymers for application in the medical field: synthesis, characterization and cell culture studies. RSC Advances, 2016, 6, 22121-22136.                                                          | 1.7 | 22        |
| 63 | Morphology and mechanical properties of poly(ethylene brassylate)/cellulose nanocrystal composites. Carbohydrate Polymers, 2019, 221, 137-145.                                                                                                  | 5.1 | 22        |
| 64 | Efficient stereocomplex crystallization in enantiomeric blends of high molecular weight polylactides. RSC Advances, 2015, 5, 34525-34534.                                                                                                       | 1.7 | 21        |
| 65 | A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles. Materials Science and Engineering C, 2014, 42, 451-460.                                       | 3.8 | 20        |
| 66 | Synthesis and properties of Ϊ‰-pentadecalactone-co-l̂´-hexalactone copolymers: a biodegradable<br>thermoplastic elastomer as an alternative to poly(l̂µ-caprolactone). RSC Advances, 2016, 6, 3137-3149.                                        | 1.7 | 20        |
| 67 | Improvement of thermal stability and mechanical properties ofÂmedical polyester composites by plasma<br>surface modification ofÂtheÂbioactive glass particles. Polymer Degradation and Stability, 2013, 98,<br>1717-1723.                       | 2.7 | 19        |
| 68 | Tensile behavior and dynamic mechanical analysis of novel poly(lactide/l̂-valerolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35, 39-50.                                                   | 1.5 | 19        |
| 69 | Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers<br>and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 2017, 94,<br>208-221.                              | 2.6 | 19        |
| 70 | Preparation of Nanocomposites of Poly(Îμ-caprolactone) and Multi-Walled Carbon Nanotubes by<br>Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers, 2017, 9,<br>322.                                      | 2.0 | 19        |
| 71 | Competing Specific Interactions Investigated by Molecular Dynamics: Analysis of<br>Poly( <i>p</i> -dioxanone)/Poly(vinylphenol) Blends. Journal of Physical Chemistry B, 2013, 117, 719-724.                                                    | 1.2 | 18        |
| 72 | Effect of bioactive glass particles on osteogenic differentiation of adiposeâ€derived mesenchymal stem<br>cells seeded on lactide and caprolactone based scaffolds. Journal of Biomedical Materials Research -<br>Part A, 2015, 103, 3815-3824. | 2.1 | 18        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Lactide-caprolactone copolymers with tuneable barrier properties for packaging applications.<br>Polymer, 2020, 202, 122681.                                                                                                                             | 1.8 | 18        |
| 74 | Nanostructured scaffolds based on bioresorbable polymers and graphene oxide induce the aligned<br>migration and accelerate the neuronal differentiation of neural stem cells. Nanomedicine:<br>Nanotechnology, Biology, and Medicine, 2021, 31, 102314. | 1.7 | 18        |
| 75 | Spectroscopic Evidence for Stereocomplex Formation by Enantiomeric Polyamides Derived from<br>Tartaric Acid. Macromolecules, 2008, 41, 3734-3738.                                                                                                       | 2.2 | 17        |
| 76 | Novel miscible blends of poly(p-dioxanone) with poly(vinyl phenol). European Polymer Journal, 2012, 48, 1455-1465.                                                                                                                                      | 2.6 | 17        |
| 77 | Physical Aging in Poly(L-lactide) and its Multi-Wall Carbon Nanotube Nanocomposites.<br>Macromolecular Symposia, 2012, 321-322, 118-123.                                                                                                                | 0.4 | 17        |
| 78 | Novel poly(vinyl alcohol)-g-poly(hydroxy acid) copolymers: Synthesis and characterization. Polymer, 2012, 53, 50-59.                                                                                                                                    | 1.8 | 17        |
| 79 | Coating of bioactive glass particles with mussel-inspired polydopamine as a strategy to improve the the the the the the the the the th                                                                                                                  | 1.7 | 17        |
| 80 | Antimicrobial poly(Îμ-caprolactone)/thymol blends: Phase behavior, interactions and drug release<br>kinetics. European Polymer Journal, 2016, 83, 288-299.                                                                                              | 2.6 | 17        |
| 81 | Ethylene brassylate: Searching for new comonomers that enhance the ductility and biodegradability of polylactides. Polymer Degradation and Stability, 2017, 137, 23-34.                                                                                 | 2.7 | 17        |
| 82 | Recycling effects on microstructure and mechanical behaviour of PEEK short carbon-fibre composites. Journal of Materials Science, 1997, 32, 533-536.                                                                                                    | 1.7 | 16        |
| 83 | Crystallinity and Crystalline Confinement of the Amorphous Phase in Polylactides. Macromolecular<br>Symposia, 2008, 272, 81-86.                                                                                                                         | 0.4 | 16        |
| 84 | Spectroscopic Characterization of Plastic Optical Fibers Doped With Fluorene Oligomers. Journal of Lightwave Technology, 2009, 27, 3220-3226.                                                                                                           | 2.7 | 15        |
| 85 | Phase behavior and effects of microstructure on viscoelastic properties of a series of polylactides and polylactide/poly(ε-caprolactone) copolymers. Rheologica Acta, 2014, 53, 857-868.                                                                | 1.1 | 15        |
| 86 | Pyrene-end-functionalized poly(L-lactide) as an efficient carbon nanotube dispersing agent in<br>poly(L-lactide): mechanical performance and biocompatibility study. Biomedical Materials (Bristol),<br>2015, 10, 045003.                               | 1.7 | 15        |
| 87 | Crystallization Behavior and Mechanical Properties of Poly(Îμ-caprolactone) Reinforced with Barium<br>Sulfate Submicron Particles. Materials, 2021, 14, 2368.                                                                                           | 1.3 | 15        |
| 88 | Exothermal Process in Miscible Polylactide/Poly(vinyl phenol) Blends: Mixing Enthalpy or Chemical Reaction?. Macromolecular Rapid Communications, 2006, 27, 2026-2031.                                                                                  | 2.0 | 14        |
| 89 | Miscibility of Poly(vinyl alcohol)- <i>graft</i> -Hydroxy Ester/Poly(vinylpyrrolidone) Blends.<br>Macromolecules, 2011, 44, 7351-7363.                                                                                                                  | 2.2 | 14        |
| 90 | Catechol End-Functionalized Polylactide by Organocatalyzed Ring-Opening Polymerization. Polymers, 2018, 10, 155.                                                                                                                                        | 2.0 | 14        |

| #   | Article                                                                                                                                                                                                                        | lF                | CITATIONS           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|
| 91  | Novel Hydrogels of Chitosan and Poly(vinyl alcohol) Reinforced with Inorganic Particles of Bioactive<br>Glass. Polymers, 2021, 13, 691.                                                                                        | 2.0               | 14                  |
| 92  | Crystallization and melting behavior of poly(εâ€caprolactoneâ€coâ€Î´â€valerolactone) and<br>poly(εâ€caprolactoneâ€co‣″actide) copolymers with novel chain microstructures. Journal of Applied<br>Polymer Science, 2015, 132, . | 1.3               | 13                  |
| 93  | Release mechanisms of urinary tract antibiotics when mixed with bioabsorbable polyesters. Materials<br>Science and Engineering C, 2018, 93, 529-538.                                                                           | 3.8               | 13                  |
| 94  | Supramolecular evolution over an initial period of biodegradation of lactide and caprolactone based medical (co)polyesters. Polymer Degradation and Stability, 2014, 108, 87-96.                                               | 2.7               | 12                  |
| 95  | Supramolecular structure, phase behavior and thermo-rheological properties of a poly ( l) Tj ETQq1 1 0.784314<br>Materials, 2015, 48, 153-163.                                                                                 | rgBT /Over<br>1.5 | lock 10 Tf 50<br>12 |
| 96  | Recent developments in drug eluting devices with tailored interfacial properties. Advances in Colloid and Interface Science, 2017, 249, 181-191.                                                                               | 7.0               | 12                  |
| 97  | Mechanical properties and state of miscibility in<br>poly(racD,L-lactide-co-glycolide)/(L-lactide-co-ε-caprolactone) blends. Journal of the Mechanical<br>Behavior of Biomedical Materials, 2017, 71, 372-382.                 | 1.5               | 12                  |
| 98  | Making novel bio-interfaces through bacterial protein recrystallization on biocompatible polylactide derivative films. Journal of Chemical Physics, 2013, 139, 121903.                                                         | 1.2               | 11                  |
| 99  | Plasticization of Poly- <scp>L</scp> -lactide with <scp>L</scp> -lactide, <scp>D</scp> -lactide, and <scp>D</scp> , <scp>L</scp> -lactide monomers. Polymer Engineering and Science, 2013, 53, 2073-2080.                      | 1.5               | 11                  |
| 100 | Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films. Applied Surface Science, 2016, 386, 327-336.                                             | 3.1               | 11                  |
| 101 | Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for<br>Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials, 2019, 1,<br>1096-1106.      | 2.0               | 11                  |
| 102 | Benefits of Polydopamine as Particle/Matrix Interface in Polylactide/PD-BaSO4 Scaffolds. International<br>Journal of Molecular Sciences, 2020, 21, 5480.                                                                       | 1.8               | 11                  |
| 103 | Electrical percolation in extrinsically conducting, poly(Îμ-decalactone) composite neural interface<br>materials. Scientific Reports, 2021, 11, 1295.                                                                          | 1.6               | 11                  |
| 104 | A flexible strain-responsive sensor fabricated from a biocompatible electronic ink via an additive-manufacturing process. Materials and Design, 2021, 206, 109700.                                                             | 3.3               | 11                  |
| 105 | Plasticization of poly(lactide) with poly(ethylene glycol): Low weight plasticizer vs triblock<br>copolymers. Effect on free volume and barrier properties. Journal of Applied Polymer Science, 2020,<br>137, 48868.           | 1.3               | 10                  |
| 106 | High Throughput Manufacturing of Bio-Resorbable Micro-Porous Scaffolds Made of<br>Poly(L-lactide-co-ε-caprolactone) by Micro-Extrusion for Soft Tissue Engineering Applications.<br>Polymers, 2020, 12, 34.                    | 2.0               | 10                  |
| 107 | Crystallization Rate Minima of Poly(ethylene brassylate) at Temperatures Transitioning between<br>Quantized Crystal Thicknesses. Macromolecules, 2022, 55, 3958-3973.                                                          | 2.2               | 10                  |
| 108 | Miscibility, interactions and antimicrobial activity of poly(ε-caprolactone)/chloramphenicol blends.<br>European Polymer Journal, 2018, 102, 30-37.                                                                            | 2.6               | 9                   |

| #   | Article                                                                                                                                                                                                                                                               | IF               | CITATIONS           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 109 | Complex phase behavior and state of miscibility in Poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50                                                                                                                                                         | 747 Td (§<br>2.4 | glycol)/Poly(«<br>8 |
| 110 | Polymer Physics, 2014, 52, 111-121.<br>Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular<br>Oxidative Stress as Prospective Combination Therapy. ACS Applied Materials & amp; Interfaces, 2021, 13,<br>18511-18524. | 4.0              | 8                   |
| 111 | Effects of isothermal crystallization on the mechanical properties of a elastomeric medium chain<br>length polyhydroxyalkanoate. European Polymer Journal, 2016, 85, 401-410.                                                                                         | 2.6              | 7                   |
| 112 | Analysis of a poly(ε-decalactone)/silver nanowire composite as an electrically conducting neural<br>interface biomaterial. BMC Biomedical Engineering, 2019, 1, 9.                                                                                                    | 1.7              | 7                   |
| 113 | Luminescence Study of Polymer Optical Fibers Doped With Conjugated Polymers. Journal of Lightwave<br>Technology, 2012, 30, 3367-3375.                                                                                                                                 | 2.7              | 6                   |
| 114 | Nanocomposites Based on PLLA and Multi Walled Carbon Nanotubes Support the Myogenic<br>Differentiation of Murine Myoblast Cell Line. ISRN Tissue Engineering, 2013, 2013, 1-8.                                                                                        | 0.5              | 6                   |
| 115 | Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. Biomatter, 2014, 4, e27979.                                                                                                                            | 2.6              | 6                   |
| 116 | Survey on transport properties of vapours and liquids on biodegradable polymers. European Polymer<br>Journal, 2019, 120, 109232.                                                                                                                                      | 2.6              | 6                   |
| 117 | Novel biodegradable and non-fouling systems for controlled-release based on<br>poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 2019, 9,<br>24154-24163.                                                                | 1.7              | 5                   |
| 118 | Amorphous solid dispersions in poly(ε-caprolactone)/xanthohumol bioactive blends: physicochemical<br>and mechanical characterization. Journal of Materials Chemistry B, 2021, 9, 4219-4229.                                                                           | 2.9              | 5                   |
| 119 | Lactide-Valerolactone Copolymers for Packaging Applications. Polymers, 2022, 14, 52.                                                                                                                                                                                  | 2.0              | 5                   |
| 120 | Phase behavior and interactions in poly(dl-lactide)/poly(styrene-co-vinylphenol) blends. European<br>Polymer Journal, 2015, 63, 58-66.                                                                                                                                | 2.6              | 4                   |
| 121 | Miscible blends of poly(ethylene oxide) with brush copolymers of poly(vinyl alcohol)- <i>graft</i><br>-poly( <scp>l</scp> -lactide). Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1217-1226.                                                        | 2.4              | 4                   |
| 122 | In vitro preparation of human Dental Pulp Stem Cell grafts with biodegradable polymer scaffolds for<br>nerve tissue engineering. Methods in Cell Biology, 2022, , 147-167.                                                                                            | 0.5              | 4                   |
| 123 | Effects of Bioactive Glass Particles on the Mechanical and Thermal Behavior of<br>Poly( <i>εâ€</i> caprolactone). Macromolecular Symposia, 2012, 321-322, 25-29.                                                                                                      | 0.4              | 3                   |
| 124 | Miscibility and Transport Properties of Poly(lactide)/Phenoxy System. Macromolecular Symposia, 2012, 321-322, 20-24.                                                                                                                                                  | 0.4              | 3                   |
| 125 | Poly(α-hydroxy Acids)-Based Cell Microcarriers. Applied Sciences (Switzerland), 2016, 6, 436.                                                                                                                                                                         | 1.3              | 3                   |
| 126 | Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers. Materials Science and Engineering C, 2014, 42, 517-528.                                                                                           | 3.8              | 2                   |

JOSE RAMON SARASUA

| #   | Article                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The conformation of chloramphenicol in the ordered and disordered phases. Spectrochimica Acta -<br>Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 383-392. | 2.0 | 2         |
| 128 | An engineered coccolith-based hybrid that transforms light into swarming motion. Cell Reports<br>Physical Science, 2021, 2, 100373.                                     | 2.8 | 2         |
| 129 | Thermal and mechanical characterization of films based on poly(vinyl alcohol) and Î²â€łactoglobulin<br>blends. Journal of Applied Polymer Science, 2015, 132, .         | 1.3 | 1         |
| 130 | Biodegradable Polylactideâ€Based Composites. , 2016, , .                                                                                                                |     | 1         |
| 131 | Mikrotxantiloien fabrikazioa eta hauen aplikazioak biomedikuntzan. Ekaia (journal), 2020, , 15-30.                                                                      | 0.0 | 0         |
|     |                                                                                                                                                                         |     |           |