
Hailiang Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology, 2016, 14, 651-662.	13.6	1,224
2	Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Applied and Environmental Microbiology, 2006, 72, 3832-3845.	1.4	379
3	Role of Microbes in the Smectite-to-Illite Reaction. Science, 2004, 303, 830-832.	6.0	262
4	Microbe-clay mineral interactions. American Mineralogist, 2009, 94, 1505-1519.	0.9	230
5	A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS ONE, 2013, 8, e53350.	1.1	216
6	Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 2007, 9, 2603-2621.	1.8	210
7	Isolation of <i>Paenibacillus</i> sp. and Assessment of its Potential for Enhancing Mineral Weathering. Geomicrobiology Journal, 2012, 29, 413-421.	1.0	190
8	Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nature Communications, 2016, 7, 10476.	5.8	189
9	Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME Journal, 2013, 7, 718-729.	4.4	182
10	Mineral transformations associated with the microbial reduction of magnetite. Chemical Geology, 2000, 169, 299-318.	1.4	180
11	Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai–Tibetan Plateau. Earth and Planetary Science Letters, 2009, 280, 276-284.	1.8	168
12	Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Scientific Reports, 2016, 6, 25078.	1.6	161
13	Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS ONE, 2013, 8, e62901.	1.1	157
14	Control of Fe(III) site occupancy on the rate and extent of microbial reduction of Fe(III) in nontronite. Geochimica Et Cosmochimica Acta, 2005, 69, 5429-5440.	1.6	142
15	Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chemical Geology, 2010, 278, 151-159.	1.4	138
16	Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, illite, and chlorite. Geochimica Et Cosmochimica Acta, 2007, 71, 1145-1158.	1.6	137
17	Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene–Holocene. Quaternary Science Reviews, 2008, 27, 867-879.	1.4	136
18	Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microbial Ecology, 2006, 51, 65-82.	1.4	133

#	Article	IF	CITATIONS
19	Microbial Reduction of Structural Fe(III) in Illite and Goethite. Environmental Science & Technology, 2003, 37, 1268-1276.	4.6	128
20	Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99). Geochimica Et Cosmochimica Acta, 2011, 75, 5229-5246.	1.6	128
21	Growth of non-phototrophic microorganisms using solar energy through mineral photocatalysis. Nature Communications, 2012, 3, 768.	5.8	126
22	Bacterial and archaeal diversities in <scp>Y</scp> unnan and <scp>T</scp> ibetan hot springs, <scp>C</scp> hina. Environmental Microbiology, 2013, 15, 1160-1175.	1.8	121
23	Sulfur-based mixotrophic bio-reduction for efficient removal of chromium (VI) in groundwater. Geochimica Et Cosmochimica Acta, 2020, 268, 296-309.	1.6	114
24	Biological Redox Cycling of Iron in Nontronite and Its Potential Application in Nitrate Removal. Environmental Science & Technology, 2015, 49, 5493-5501.	4.6	109
25	Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chemical Geology, 2009, 264, 127-138.	1.4	108
26	Microscopic Evidence for Microbial Dissolution of Smectite. Clays and Clay Minerals, 2003, 51, 502-512.	0.6	107
27	Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica Et Cosmochimica Acta, 2014, 133, 186-203.	1.6	103
28	Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chemical Geology, 2012, 292-293, 35-44.	1.4	101
29	Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals. Journal of Hazardous Materials, 2017, 331, 88-98.	6.5	101
30	Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochimica Et Cosmochimica Acta, 2011, 75, 1057-1071.	1.6	96
31	Microbial Mineral Weathering for Nutrient Acquisition Releases Arsenic. Applied and Environmental Microbiology, 2009, 75, 2558-2565.	1.4	95
32	Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chemical Geology, 2007, 236, 167-179.	1.4	93
33	Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chemical Geology, 2014, 370, 29-39.	1.4	91
34	Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. Journal of Geophysical Research, 2007, 112, .	3.3	89
35	Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica Et Cosmochimica Acta, 2015, 148, 442-456.	1.6	89
36	Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction by Pseudogulbenkiania sp. Strain 2002. Geochimica Et Cosmochimica Acta, 2013, 119, 231-247.	1.6	88

#	Article	IF	CITATIONS
37	A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. National Science Review, 2022, 9, .	4.6	86
38	Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines. FEMS Microbiology Ecology, 2013, 85, 452-464.	1.3	85
39	Distribution of glycerol dialkyl glycerol tetraethers in surface sediments of Lake Qinghai and surrounding soil. Organic Geochemistry, 2012, 47, 78-87.	0.9	84
40	Experimental Measurements of the Adsorption ofBacillus subtilisandPseudomonas mendocinaOnto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiology Journal, 2004, 21, 511-519.	1.0	83
41	Phylogeography of regional fauna on the Tibetan Plateau: A review. Progress in Natural Science: Materials International, 2009, 19, 789-799.	1.8	82
42	Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 2009, 34, 418-436.	1.0	82
43	RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China. Applied and Environmental Microbiology, 2010, 76, 4538-4541.	1.4	81
44	Sequencing of Multiple Clostridial Genomes Related to Biomass Conversion and Biofuel Production. Journal of Bacteriology, 2010, 192, 6494-6496.	1.0	81
45	Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles, 2011, 15, 549-563.	0.9	80
46	Phase relations among smectite, R1 illite-smectite, and illite. American Mineralogist, 1997, 82, 379-391.	0.9	79
47	Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation. Environmental Science & Technology, 2020, 54, 15013-15023.	4.6	79
48	Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China. Applied and Environmental Microbiology, 2005, 71, 3213-3227.	1.4	77
49	Theoretical prediction of collision efficiency between adhesion-deficient bacteria and sediment grain surface. Colloids and Surfaces B: Biointerfaces, 2002, 24, 229-245.	2.5	76
50	Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 2007, 92, 1411-1419.	0.9	75
51	Effects of redox cycling of iron in nontronite on reduction of technetium. Chemical Geology, 2012, 291, 206-216.	1.4	75
52	Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 2009, 26, 199-211.	1.0	74
53	Mineral-microbe interactions: a review. Frontiers of Earth Science, 2010, 4, 127-147.	0.5	70
54	Relative Dominance of Physical versus Chemical Effects on the Transport of Adhesion-Deficient Bacteria in Intact Cores from South Oyster, Virginia. Environmental Science & Technology, 2002, 36, 891-900.	4.6	68

#	Article	IF	CITATIONS
55	Reductive biotransformation of Fe in shale–limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochimica Et Cosmochimica Acta, 2006, 70, 3662-3676.	1.6	67
56	TEM Observations of Coherent Stacking Relations in Smectite, I/S and Illite of Shales: Evidence for MacEwan Crystallites and Dominance of 2M1 Polytypism. Clays and Clay Minerals, 1996, 44, 257-275.	0.6	66
57	Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: reactivity in terms of Tc(VII) reduction. Clays and Clay Minerals, 2008, 56, 175-189.	0.6	64
58	Cultivation and characterization of thermophilic <i>Nitrospira</i> species from geothermal springs in the US Great Basin, China, and Armenia. FEMS Microbiology Ecology, 2013, 85, 283-292.	1.3	64
59	Reduced Iron-Containing Clay Minerals as Antibacterial Agents. Environmental Science & Technology, 2017, 51, 7639-7647.	4.6	64
60	Mountain biodiversity and ecosystem functions: interplay between geology and contemporary environments. ISME Journal, 2020, 14, 931-944.	4.4	64
61	Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME Journal, 2020, 14, 2313-2324.	4.4	64
62	Microbial Community in High Arsenic Shallow Groundwater Aquifers in Hetao Basin of Inner Mongolia, China. PLoS ONE, 2015, 10, e0125844.	1,1	63
63	Stimulation of Fe(II) Oxidation, Biogenic Lepidocrocite Formation, and Arsenic Immobilization by <i>Pseudogulbenkiania</i> Sp. Strain 2002. Environmental Science & Technology, 2016, 50, 6449-6458.	4.6	63
64	Bioleaching of rare earth elements from bastnaesite-bearing rock by actinobacteria. Chemical Geology, 2018, 483, 544-557.	1.4	63
65	Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist, 2007, 92, 1401-1410.	0.9	62
66	Dominance of putative marine benthic <i>Archaea</i> in Qinghai Lake, northâ€western China. Environmental Microbiology, 2008, 10, 2355-2367.	1.8	62
67	Microbial diversity in acid mine drainage of Xiang Mountain sulfide mine, Anhui Province, China. Extremophiles, 2010, 14, 465-474.	0.9	61
68	Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China. Applied and Environmental Microbiology, 2014, 80, 5593-5602.	1.4	60
69	A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China. Geoscience Frontiers, 2012, 3, 273-288.	4.3	59
70	Microbial diversity of two cold seep systems in gas hydrate-bearing sediments in the South China Sea. Marine Environmental Research, 2019, 144, 230-239.	1.1	59
71	Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite. Geochimica Et Cosmochimica Acta, 2019, 251, 136-156.	1.6	59
72	Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary: Effects of Extraction Methods and Impact on bGDGT Proxies. Frontiers in Microbiology, 2011, 2, 274.	1.5	58

#	Article	IF	CITATIONS
73	Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochimica Et Cosmochimica Acta, 2013, 106, 203-215.	1.6	57
74	Seasonal patterns in microbial communities inhabiting the hot springs of <scp>T</scp> engchong, <scp>Y</scp> unnan Province, <scp>C</scp> hina. Environmental Microbiology, 2014, 16, 1579-1591.	1.8	57
75	Ti content in Huguangyan maar lake sediment as a proxy for monsoonâ€induced vegetation density in the Holocene. Geophysical Research Letters, 2013, 40, 5757-5763.	1.5	56
76	ldentification of Photosynthetic Plankton Communities Using Sedimentary Ancient DNA and Their Response to late-Holocene Climate Change on the Tibetan Plateau. Scientific Reports, 2014, 4, 6648.	1.6	56
77	A comprehensive census of lake microbial diversity on a global scale. Science China Life Sciences, 2019, 62, 1320-1331.	2.3	56
78	Nontronite particle aggregation induced by microbial Fe(III) reduction and exopolysaccharide production. Clays and Clay Minerals, 2007, 55, 96-107.	0.6	53
79	Co-occurrence of nitrite-dependent anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai-Tibetan saline lakes. Frontiers of Earth Science, 2012, 6, 383-391.	0.9	53
80	Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan plateau: Implications for paleo lake levels and paleoclimate. Chemical Geology, 2014, 368, 76-84.	1.4	53
81	Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Scientific Reports, 2016, 5, 18071.	1.6	52
82	Efficient Reductive Destruction of Perfluoroalkyl Substances under Self-Assembled Micelle Confinement. Environmental Science & Technology, 2020, 54, 5178-5185.	4.6	52
83	Microbial reduction of fe(III) in the Fithian and Muloorina illites: contrasting extents and rates of bioreduction. Clays and Clay Minerals, 2006, 54, 67-79.	0.6	51
84	Fe2+ sorption onto nontronite (NAu-2). Geochimica Et Cosmochimica Acta, 2008, 72, 5361-5371.	1.6	50
85	Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiology Ecology, 2009, 67, 268-278.	1.3	47
86	Microbial diversity in cold seep sediments from the northern South China Sea. Geoscience Frontiers, 2012, 3, 301-316.	4.3	47
87	A less or more dusty future in the Northern Qinghai-Tibetan Plateau?. Scientific Reports, 2014, 4, 6672.	1.6	47
88	Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction. Environmental Science & Technology, 2019, 53, 13732-13741.	4.6	47
89	Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implication for provenance and transportation. Marine Geology, 2010, 274, 107-119.	0.9	46
90	The Formation of Illite from Nontronite by Mesophilic and Thermophilic Bacterial Reaction. Clays and Clay Minerals, 2011, 59, 21-33.	0.6	45

6

#	Article	IF	CITATIONS
91	Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia. Frontiers in Microbiology, 2016, 7, 1917.	1.5	44
92	Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate. Chemosphere, 2016, 144, 1106-1115.	4.2	44
93	Deglacial and Holocene Archaeal Lipid-Inferred Paleohydrology and Paleotemperature History of Lake Qinghai, Northeastern Qinghai–Tibetan Plateau. Quaternary Research, 2015, 83, 116-126.	1.0	43
94	Kinetic Analysis of Microbial Reduction of Fe(III) in Nontronite. Environmental Science & Technology, 2007, 41, 2437-2444.	4.6	41
95	Response of Archaeal Community Structure to Environmental Changes in Lakes on the Tibetan Plateau, Northwestern China. Geomicrobiology Journal, 2009, 26, 289-297.	1.0	41
96	Continental Scientific Drilling Project of Cretaceous Songliao Basin: Scientific objectives and drilling technology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385, 6-16.	1.0	41
97	Greater temporal changes of sediment microbial community than its waterborne counterpart in Tengchong hot springs, Yunnan Province, China. Scientific Reports, 2014, 4, 7479.	1.6	41
98	Effects of citrate on hexavalent chromium reduction by structural Fe(II) in nontronite. Journal of Hazardous Materials, 2018, 343, 245-254.	6.5	41
99	Coupling of Fe(II) oxidation in illite with nitrate reduction and its role in clay mineral transformation. Geochimica Et Cosmochimica Acta, 2017, 200, 353-366.	1.6	40
100	Ultrahigh-Pressure Mineral Assemblages in Zircons from the Surface to 5158 m Depth in Cores of the Main Drill Hole, Chinese Continental Scientific Drilling Project, Southwestern Sulu Belt, China. International Geology Review, 2007, 49, 454-478.	1.1	39
101	Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, northâ€west China: implications for the role of organic substrate on dolomite precipitation. Terra Nova, 2013, 25, 387-395.	0.9	39
102	Microbial production of long-chain n-alkanes: Implication for interpreting sedimentary leaf wax signals. Organic Geochemistry, 2018, 115, 24-31.	0.9	39
103	Bio-reduction of ferrihydrite-montmorillonite-organic matter complexes: Effect of montmorillonite and fate of organic matter. Geochimica Et Cosmochimica Acta, 2020, 276, 327-344.	1.6	39
104	Microbial Diversity in the Deep Marine Sediments from the Qiongdongnan Basin in South China Sea. Geomicrobiology Journal, 2007, 24, 505-517.	1.0	38
105	Microbial reduction of chlorite and uranium followed by air oxidation. Chemical Geology, 2011, 283, 242-250.	1.4	38
106	Endolithic Bacterial Communities in Dolomite and Limestone Rocks from the Nanjiang Canyon in Guizhou Karst Area (China). Geomicrobiology Journal, 2012, 29, 213-225.	1.0	38
107	Distribution and Diversity of Cyanobacteria and Eukaryotic Algae in Qinghai–Tibetan Lakes. Geomicrobiology Journal, 2016, 33, 860-869.	1.0	38
108	Naturally occurring, microbially induced smectite-to-illite reaction. Geology, 2019, 47, 535-539.	2.0	37

#	Article	IF	CITATIONS
109	Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochimica Et Cosmochimica Acta, 2019, 252, 88-106.	1.6	37
110	High beta diversity of bacteria in the shallow terrestrial subsurface. Environmental Microbiology, 2008, 10, 2537-2549.	1.8	36
111	<i>Actinobacterial</i> Diversity in Hot Springs in Tengchong (China), Kamchatka (Russia), and Nevada (USA). Geomicrobiology Journal, 2009, 26, 256-263.	1.0	36
112	Mineral transformations associated with goethite reduction by Methanosarcina barkeri. Chemical Geology, 2011, 288, 53-60.	1.4	36
113	Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes. Applied and Environmental Microbiology, 2016, 82, 992-1003.	1.4	36
114	Hexavalent chromium removal by chitosan modified-bioreduced nontronite. Geochimica Et Cosmochimica Acta, 2017, 210, 25-41.	1.6	36
115	The role of physical, chemical, and microbial heterogeneity on the field-scale transport and attachment of bacteria. Water Resources Research, 2003, 39, .	1.7	35
116	Bacterial Succession within an Ephemeral Hypereutrophic Mojave Desert Playa Lake. Microbial Ecology, 2009, 57, 307-320.	1.4	35
117	Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles, 2010, 14, 367-376.	0.9	35
118	Diversity of microbial plankton across the Three Gorges Dam of the Yangtze River, China. Geoscience Frontiers, 2012, 3, 335-349.	4.3	35
119	Microbial Diversity in High Arsenic Groundwater in Hetao Basin of Inner Mongolia, China. Geomicrobiology Journal, 2013, 30, 897-909.	1.0	35
120	Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring. Frontiers in Microbiology, 2017, 8, 1336.	1.5	35
121	Disentangling Microbial Syntrophic Mechanisms for Hexavalent Chromium Reduction in Autotrophic Biosystems. Environmental Science & Technology, 2021, 55, 6340-6351.	4.6	35
122	Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan Plateau. Organic Geochemistry, 2013, 54, 69-77.	0.9	34
123	amoA-encoding archaea and thaumarchaeol in the lakes on the northeastern Qinghai-Tibetan Plateau, China. Frontiers in Microbiology, 2013, 4, 329.	1.5	34
124	Transmission Electron Microscopy Study of Conversion of Smectite to Illite in Mudstones of the Nankai trough: Contrast with Coeval Bentonites. Clays and Clay Minerals, 2001, 49, 109-118.	0.6	33
125	Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles, 2009, 13, 623-632.	0.9	32
126	Smectite Reduction by <i>Shewanella</i> Species as Facilitated by Cystine and Cysteine. Geomicrobiology Journal, 2014, 31, 53-63.	1.0	32

#	Article	IF	CITATIONS
127	Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite. Chemical Geology, 2016, 447, 199-207.	1.4	32
128	lron reduction by diverse actinobacteria under oxic and pH-neutral conditions and the formation of secondary minerals. Chemical Geology, 2019, 525, 390-399.	1.4	32
129	Significance of electrophoretic mobility distribution to bacterial transport in granular porous media. Journal of Microbiological Methods, 2002, 51, 83-93.	0.7	31
130	Isolation of diverse members of the Aquificales from geothermal springs in Tengchong, China. Frontiers in Microbiology, 2015, 6, 157.	1.5	31
131	Organic structural properties of kerogen as predictors of source rock type and hydrocarbon potential. Fuel, 2016, 184, 792-798.	3.4	31
132	The Factors Controlling Microbial Distribution and Activity in the Shallow Subsurface. Geomicrobiology Journal, 2003, 20, 245-261.	1.0	30
133	The effect of microbial Fe(III) reduction on smectite flocculation. Clays and Clay Minerals, 2005, 53, 572-579.	0.6	30
134	Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. American Mineralogist, 2009, 94, 1049-1058.	0.9	30
135	Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau. Organic Geochemistry, 2013, 61, 45-56.	0.9	30
136	Coupled Diffusion and Abiotic Reaction of Trichlorethene in Minimally Disturbed Rock Matrices. Environmental Science & Technology, 2013, 47, 4291-4298.	4.6	30
137	Preservation of organic matter in nontronite against iron redox cycling. American Mineralogist, 2016, 101, 120-133.	0.9	30
138	Significant seasonal variations of microbial community in an acid mine drainage lake in Anhui Province, China. Environmental Pollution, 2017, 223, 507-516.	3.7	30
139	Distinct assembly processes shape bacterial communities along unsaturated, groundwater fluctuated, and saturated zones. Science of the Total Environment, 2021, 761, 143303.	3.9	30
140	Impacts of environmental change and human activity on microbial ecosystems on the Tibetan Plateau, NW China. GSA Today, 2010, , 4-10.	1.1	30
141	Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables. Environmental Microbiology, 2015, 17, 1600-1614.	1.8	29
142	Reductive defluorination of Perfluorooctanesulfonic acid (PFOS) by hydrated electrons generated upon UV irradiation of 3-Indole-acetic-acid in 12-Aminolauric-Modified montmorillonite. Water Research, 2021, 200, 117221.	5.3	29
143	Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. Science of the Total Environment, 2021, 791, 148108.	3.9	29
144	Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geoscience Frontiers, 2012, 3, 351-356.	4.3	28

#	Article	IF	CITATIONS
145	Abundance and Diversity of Sulfate-Reducing Bacteria in High Arsenic Shallow Aquifers. Geomicrobiology Journal, 2014, 31, 802-812.	1.0	28
146	Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation. Environmental Science & Speciation. Environmental Science & Speciation. Environmental Science & Speciation.	4.6	28
147	The role of Fe(III) bioreduction by methanogens in the preservation of organic matter in smectite. Chemical Geology, 2014, 389, 16-28.	1.4	27
148	History of petroleum disturbance triggering the depth-resolved assembly process of microbial communities in the vadose zone. Journal of Hazardous Materials, 2021, 402, 124060.	6.5	27
149	Lignin-enhanced reduction of structural Fe(III) in nontronite: Dual roles of lignin as electron shuttle and donor. Geochimica Et Cosmochimica Acta, 2021, 307, 1-21.	1.6	27
150	Correlation between bacterial attachment rate coefficients and hydraulic conductivity and its effect on field-scale bacterial transport. Advances in Water Resources, 2007, 30, 1571-1582.	1.7	26
151	Response of Aerobic Anoxygenic Phototrophic Bacterial Diversity to Environment Conditions in Saline Lakes and Daotang River on the Tibetan Plateau, NW China. Geomicrobiology Journal, 2010, 27, 400-408.	1.0	26
152	Relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. Journal of Soils and Sediments, 2021, 21, 1-12.	1.5	26
153	Temporal Succession of Ancient Phytoplankton Community in Qinghai Lake and Implication for Paleo-environmental Change. Scientific Reports, 2016, 6, 19769.	1.6	25
154	Chemical composition of n-alkanes and microbially mediated n-alkane degradation potential differ in the sediments of Qinghai-Tibetan lakes with different salinity. Chemical Geology, 2019, 524, 37-48.	1.4	25
155	Unique Microbial Community in Drilling Fluids from Chinese Continental Scientific Drilling. Geomicrobiology Journal, 2006, 23, 499-514.	1.0	24
156	Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles, 2014, 18, 161-170.	0.9	24
157	Adsorption and mineralization of REE—lanthanum onto bacterial cell surface. Environmental Science and Pollution Research, 2018, 25, 22334-22339.	2.7	24
158	Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province, China. Environmental Pollution, 2021, 268, 115826.	3.7	24
159	Geomicrobiological processes in extreme environments: A review. Episodes, 2007, 30, 202-216.	0.8	24
160	The role of clay minerals in the preservation of organic matter in sediments of Qinghai Lake, NW China. Clays and Clay Minerals, 2009, 57, 213-226.	0.6	23
161	Reverse-transcriptional gene expression of anammox and ammonia-oxidizing archaea and bacteria in soybean and rice paddy soils of Northeast China. Applied Microbiology and Biotechnology, 2014, 98, 2675-2686.	1.7	23
162	Diversity and Abundance of Ammonia-Oxidizing Archaea and Bacteria in Diverse Chinese Paddy Soils. Geomicrobiology Journal, 2014, 31, 12-22.	1.0	23

#	Article	IF	CITATIONS
163	Shifts of methanogenic communities in response to permafrost thaw results in rising methane emissions and soil property changes. Extremophiles, 2018, 22, 447-459.	0.9	23
164	Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochimica Et Cosmochimica Acta, 2019, 265, 132-147.	1.6	23
165	Mechanisms of Enhanced Antibacterial Activity by Reduced Chitosan-Intercalated Nontronite. Environmental Science & Technology, 2020, 54, 5207-5217.	4.6	23
166	Distribution of glycerol dialkyl glycerol tetraethers in Tibetan hot springs. Geoscience Frontiers, 2012, 3, 289-300.	4.3	22
167	Biodiversity patterns across taxonomic groups along a lake water-depth gradient: Effects of abiotic and biotic drivers. Science of the Total Environment, 2019, 686, 1262-1271.	3.9	22
168	Ammonia-oxidizing Archaea in Kamchatka Hot Springs. Geomicrobiology Journal, 2011, 28, 149-159.	1.0	21
169	Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE. Chemosphere, 2015, 119, 744-749.	4.2	21
170	Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(III) minerals (Fh-Gt) Tj ETQq0 0 0 r	gBT /Over 4.2	lock 10 Tf 50
171	Role of Microbial Fe(III) Reduction and Solution Chemistry in Aggregation and Settling of Suspended Particles in the Mississippi River Delta Plain, Louisiana, USA. Clays and Clay Minerals, 2008, 56, 416-428.	0.6	20
172	Transformation of halloysite and kaolinite into beidellite under hydrothermal condition. American Mineralogist, 2017, 102, 997-1005.	0.9	20
173	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. Journal of Environmental Sciences, 2021, 101, 156-167.	3.2	20
174	Antibacterial Mechanisms of Reduced Iron-Containing Smectite–Illite Clay Minerals. Environmental Science & Technology, 2021, 55, 15256-15265.	4.6	20
175	Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium. Chemical Geology, 2015, 406, 25-33.	1.4	19
176	Distribution and Diversity of Aerobic Carbon Monoxide-Oxidizing Bacteria in Geothermal Springs of China, the Philippines, and the United States. Geomicrobiology Journal, 2015, 32, 903-913.	1.0	19
177	Biological reduction of structural Fe(III) in smectites by a marine bacterium at 0.1 and 20 MPa. Chemical Geology, 2016, 438, 1-10.	1.4	19
178	Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. Science of the Total Environment, 2020, 741, 140213.	3.9	19
179	Bacterial synthesis of PbS nanocrystallites in one-step with l-cysteine serving as both sulfur source and capping ligand. Scientific Reports, 2021, 11, 1216.	1.6	19
180	TRANSMISSION AND ANALYTICAL ELECTRON MICROSCOPY EVIDENCE FOR HIGH Mg CONTENTS OF 1 <i>M</i> ILLITE: ABSENCE OF 1 M POLYTYPISM IN NORMAL PROGRADE DIAGENETIC SEQUENCES OF PELITIC ROCKS. Clays and Clay Minerals, 2002, 50, 757-765.	0.6	18

#	Article	IF	CITATIONS
181	Microbial Community Composition in Acid Mine Drainage Lake of Xiang Mountain Sulfide Mine in Anhui Province, China. Geomicrobiology Journal, 2012, 29, 886-895.	1.0	18
182	Iron and phosphorus effects on the growth of Cryptomonas sp. (Cryptophyceae) and their availability in sediments from the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science, 2007, 73, 501-509.	0.9	17
183	Actinobacterial Diversity in Microbial Mats of Five Hot Springs in Central and Central-Eastern Tibet, China. Geomicrobiology Journal, 2012, 29, 520-527.	1.0	17
184	Diversity of Carbon Monoxide-Oxidizing Bacteria in Five Lakes on the Qinghai-Tibet Plateau, China. Geomicrobiology Journal, 2013, 30, 758-767.	1.0	17
185	Abundance and Diversity of Sulfur-Oxidizing Bacteria along a Salinity Gradient in Four Qinghai-Tibetan Lakes, China. Geomicrobiology Journal, 2013, 30, 851-860.	1.0	17
186	Resource recovery: Adsorption and biomineralization of cerium by Bacillus licheniformis. Journal of Hazardous Materials, 2022, 426, 127844.	6.5	17
187	Generation of hydrothermal Feâ€Si oxyhydroxide deposit on the Southwest Indian Ridge and its implication for the origin of ancient banded iron formations. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 187-203.	1.3	16
188	Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR. Microbiome, 2019, 7, 71.	4.9	16
189	The Effects of Salinity and pH on Microbial Community Diversity and Distribution Pattern in the Brines of Soda Lakes in Badain Jaran Desert, China. Geomicrobiology Journal, 2020, 37, 1-12.	1.0	16
190	Minerals play key roles in driving prokaryotic and fungal communities in the surface sediments of the Qinghai-Tibetan lakes. FEMS Microbiology Ecology, 2020, 96, .	1.3	16
191	Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. Journal of Proteome Research, 2020, 19, 1863-1872.	1.8	16
192	Succession of Acidophilic Bacterial Community During Bio-oxidation of Refractory Gold-Containing Sulfides. Geomicrobiology Journal, 2010, 27, 683-691.	1.0	15
193	Application of Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtered Transmission Electron Microscopy (EFTEM) to the Study of Mineral Transformation Associated with Microbial Fe-Reduction of Magnetite. Clays and Clay Minerals, 2011, 59, 176-188.	0.6	15
194	Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs. Organic Geochemistry, 2014, 75, 109-121.	0.9	15
195	Microbial diversity in fracture and pore filling gas hydrate-bearing sediments at Site GMCS2-16 in the Pearl River Mouth Basin, the South China Sea. Marine Geology, 2020, 427, 106264.	0.9	15
196	The Important Role of Enzyme Adsorbing Capacity of Soil Minerals in Regulating βâ€Glucosidase Activity. Geophysical Research Letters, 2022, 49, .	1.5	15
197	Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. MSystems, 2022, 7, .	1.7	15
198	Iron and lead ion adsorption by microbial flocculants in synthetic wastewater and their related carbonate formation. Journal of Environmental Sciences, 2013, 25, 2422-2428.	3.2	13

#	Article	IF	CITATIONS
199	Environmental controls on the distribution of archaeal lipids in <scp>T</scp> ibetan hot springs: insight into the application of organic proxies for biogeochemical processes. Environmental Microbiology Reports, 2013, 5, 868-882.	1.0	13
200	Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus. Applied Clay Science, 2016, 126, 25-32.	2.6	13
201	A 12-kyr record of microbial branched and isoprenoid tetraether index in Lake Qinghai, northeastern Qinghai-Tibet Plateau: Implications for paleoclimate reconstruction. Science China Earth Sciences, 2016, 59, 951-960.	2.3	13
202	Reduction of structural Fe(III) in nontronite by thermophilic microbial consortia enriched from hot springs in Tengchong, Yunnan Province, China. Chemical Geology, 2018, 479, 47-57.	1.4	13
203	Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral. Applied Clay Science, 2019, 180, 105199.	2.6	13
204	Promotion of Microbial Oxidation of Structural Fe(II) in Nontronite by Oxalate and NTA. Environmental Science & Technology, 2020, 54, 13026-13035.	4.6	13
205	Breakthroughs in field-scale bacterial transport. Eos, 2001, 82, 417-417.	0.1	12
206	Change of Collision Efficiency with Distance in Bacterial Transport Experiments. Ground Water, 2006, 44, 415-429.	0.7	12
207	Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China. Frontiers in Microbiology, 2013, 4, 312.	1.5	12
208	Taxonomic and Functional Diversity Provides Insight into Microbial Pathways and Stress Responses in the Saline Qinghai Lake, China. PLoS ONE, 2014, 9, e111681.	1.1	12
209	Production of branched tetraether lipids in Tibetan hot springs: A possible linkage to nitrite reduction by thermotolerant or thermophilic bacteria?. Chemical Geology, 2014, 386, 209-217.	1.4	12
210	Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Applied Clay Science, 2016, 134, 34-43.	2.6	12
211	Relative importance of advective flow versus environmental gradient in shaping aquatic ammonium oxidizers near the Three Corges Dam of the Yangtze River, China. Environmental Microbiology Reports, 2016, 8, 667-674.	1.0	12
212	Comparative evaluation of three archaeal primer pairs for exploring archaeal communities in deep-sea sediments and permafrost soils. Extremophiles, 2019, 23, 747-757.	0.9	12
213	Molecular composition of dissolved organic matter in saline lakes of the Qing-Tibetan Plateau. Organic Geochemistry, 2022, 167, 104400.	0.9	12
214	The interaction of fungus with calcite and the effects on aqueous Geochemistry in karst systems. Carbonates and Evaporites, 2013, 28, 413-418.	0.4	11
215	Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs. Frontiers in Microbiology, 2013, 4, 222.	1.5	11
216	Metabolic Influence of Psychrophilic Diatoms on Travertines at the Huanglong Natural Scenic District of China. International Journal of Environmental Research and Public Health, 2014, 11, 13084-13096.	1.2	11

#	Article	IF	CITATIONS
217	Effect of bacterial cell addition on Fe(III) reduction and soil organic matter transformation in a farmland soil. Geochimica Et Cosmochimica Acta, 2022, 325, 25-38.	1.6	11
218	Microbial Life in Extreme Environments: Linking Geological and Microbiological Processes. Modern Approaches in Solid Earth Sciences, 2008, , 237-280.	0.1	10
219	Archaeal Lipids and 16S rRNA Genes Characterizing Non-hydrate and Hydrate-Impacted Sediments in the Gulf of Mexico. Geomicrobiology Journal, 2009, 26, 227-237.	1.0	10
220	Bioavailability of Fe(III) In Loess Sediments: An Important Source of Electron Acceptors. Clays and Clay Minerals, 2010, 58, 542-557.	0.6	10
221	Microbial diversity in two cold springs on the Qinghai-Tibetan Plateau. Geoscience Frontiers, 2012, 3, 317-325.	4.3	10
222	Abundance and Diversity of Ammonia-Oxidizing Bacteria and Archaea in Cold Springs on the Qinghai-Tibet Plateau. Geomicrobiology Journal, 2013, 30, 530-539.	1.0	10
223	Permanganate diffusion and reaction in sedimentary rocks. Journal of Contaminant Hydrology, 2014, 159, 36-46.	1.6	10
224	Coupling quinoline degradation with Fe redox in clay minerals: A strategy integrating biological and physicochemical processes. Applied Clay Science, 2020, 188, 105504.	2.6	10
225	Coupled Mn(II) and Cr(III) Oxidation Mediated by Ascomycete Fungi. Environmental Science & Technology, 2021, 55, 16236-16245.	4.6	10
226	Microbial Diversity and Community Structure on Corroding Concretes. Geomicrobiology Journal, 2012, 29, 450-458.	1.0	9
227	Use of microfocused X-ray techniques to investigate the mobilization of arsenic by oxalic acid. Geochimica Et Cosmochimica Acta, 2012, 91, 254-270.	1.6	9
228	Carbon Fixation by Photosynthetic Mats Along a Temperature Gradient in a Tengchong Hot Spring. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005719.	1.3	9
229	Novel <i>Sulfolobus</i> Fuselloviruses with Extensive Genomic Variations. Journal of Virology, 2020, 94, .	1.5	9
230	Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. Geobiology, 2021, 19, 278-291.	1.1	9
231	Microorganisms Accelerate REE Mineralization in Supergene Environments. Applied and Environmental Microbiology, 2022, 88, .	1.4	9
232	[Cobalt(III)–EDTA]â^' reduction by thermophilic methanogen Methanothermobacter thermautotrophicus. Chemical Geology, 2015, 411, 49-56.	1.4	8
233	Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF-SIMS Analysis. Environmental Science & Technology, 2021, 55, 7123-7134.	4.6	8
234	Oxidative degradation of commingled trichloroethylene and 1,4-dioxane by hydroxyl radicals produced upon oxygenation of a reduced clay mineral. Chemosphere, 2022, 290, 133265.	4.2	8

#	Article	IF	CITATIONS
235	Abundance and diversity of candidate division JS1- and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Frontiers of Earth Science, 2012, 6, 373-382.	0.9	7
236	The distribution and abundance of archaeal tetraether lipids in U.S. Great Basin hot springs. Frontiers in Microbiology, 2013, 4, 247.	1.5	7
237	Distribution of Arsenite-Oxidizing Bacteria and its Correlation with Temperature in Hot Springs of the Tibetan-Yunnan Geothermal Zone in Western China. Geomicrobiology Journal, 2015, 32, 482-493.	1.0	7
238	Succession of Microbial Communities in Waste Soils of an Iron Mine in Eastern China. Microorganisms, 2021, 9, 2463.	1.6	7
239	Combined Effects of Fe(III)-Bearing Nontronite and Organic Ligands on Biogenic U(IV) Oxidation. Environmental Science & Technology, 2022, 56, 1983-1993.	4.6	7
240	Microbially mediated iron redox cycling of subsurface sediments from Hanford Site, Washington State, USA. Chemical Geology, 2020, 546, 119643.	1.4	6
241	Bio-weathering of a uranium-bearing rhyolitic rock from Xiangshan uranium deposit, Southeast China. Geochimica Et Cosmochimica Acta, 2020, 279, 88-106.	1.6	6
242	Linking historical vegetation to bacterial succession under the contrasting climates of the Tibetan Plateau. Ecological Indicators, 2021, 126, 107625.	2.6	6
243	Comparison of reduction extent of Fe(III) in nontronite by Shewanella putrefaciens and Desulfovibrio vulgaris. Journal of Earth Science (Wuhan, China), 2010, 21, 297-299.	1.1	5
244	Self-Assembly of Water-Soluble Glutathione Thiol-Capped n-Hematite–p–XZn-Ferrites (X = Mg, Mn, or) Tj ETG	Qq0 0 0 rg 1.5	BT ₅ /Overlock
245	Abundance and taxonomic affiliation of molybdenum transport and utilization genes in Tengchong hot springs, China. Environmental Microbiology, 2018, 20, 2397-2409.	1.8	5
246	High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers. Frontiers in Microbiology, 2018, 9, 887.	1.5	5
247	Phyllosilicates as protective habitats of filamentous cyanobacteria Leptolyngbya against ultraviolet radiation. PLoS ONE, 2019, 14, e0219616.	1.1	5
248	Responses of Acidophilic Communities in Different Acid Mine Drainages to Environmental Conditions in Nanshan Mine, Anhui Province, China. Geomicrobiology Journal, 2021, 38, 686-697.	1.0	5
249	Geomicrobiology Research in China: Mineral-Microbe Interactions. Geomicrobiology Journal, 2012, 29, 197-198.	1.0	4
250	The Response of Potentially Active Planktonic Actinobacteria to the Construction of Three Gorges Dam of the Yangtze River, China. Geomicrobiology Journal, 2012, 29, 114-123.	1.0	4
251	A carbon free filter for collection of large volume samples of cellular biomass from oligotrophic waters. Journal of Microbiological Methods, 2012, 90, 145-151.	0.7	4
252	Natural attenuation potential of tricholoroethene in wetland plant roots: Role of native ammonium-oxidizing microorganisms. Chemosphere, 2015, 119, 971-977.	4.2	4

#	Article	IF	CITATIONS
253	Biosynthesized magnetite-perovskite (XFe2O4-BiFeO3) interfaces for toxic trace metal removal from aqueous solution. Ceramics International, 2018, 44, 21210-21220.	2.3	4
254	The Effect of Spring Water Geochemistry on Copper Proteins in Tengchong Hot Springs, China. Applied and Environmental Microbiology, 2020, 86, .	1.4	4
255	Iron availability is a key factor for freshwater cyanobacterial survival against saline stress. Environmental Research, 2021, 194, 110592.	3.7	4
256	Minerals Determined a Special Ecological Niche and Selectively Enriched Microbial Species from Bulk Water Communities in Hot Springs. Microorganisms, 2021, 9, 1020.	1.6	4
257	Incomplete denitrification phenotypes in diverse Thermus species from diverse geothermal spring sediments and adjacent soils in southwest China. Extremophiles, 2022, 26, .	0.9	4
258	The limited role of aquifer heterogeneity on metal reduction in an Atlantic coastal plain determined by push-pull tests. Applied Geochemistry, 2007, 22, 974-995.	1.4	2
259	Surviving onshore soil microbial communities differ among the Qing-Tibetan lakes with different salinity. FEMS Microbiology Ecology, 2019, 95, .	1.3	2
260	The Lifestyle-Dependent Microbial Interactions Vary Between Upstream and Downstream of the Three Gorges Dam. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
261	Microscopic Evidence for Microbial Dissolution of Smectite. , 2003, 51, 502.		2
262	Enhancement of biogenic methane production from subbituminous coal by reduced iron-bearing clay mineral. International Journal of Coal Geology, 2021, 248, 103862.	1.9	2
263	High Abundance of Thaumarchaeota Found in Deep Metamorphic Subsurface in Eastern China. Microorganisms, 2022, 10, 542.	1.6	2
264	Biogeochemistry and geomicrobiology in extreme environments: Preface. Geoscience Frontiers, 2012, 3, 269-271.	4.3	1
265	Tectonomicrobiology: A new paradigm for geobiological research. Science China Earth Sciences, 2018, 61, 494-498.	2.3	1
266	Who's Who in Mineral Names. Rocks and Minerals, 2007, 82, 516-519.	0.0	0
267	The Tolerance of Chromium (VI) by Delftia acidovorans. Microscopy and Microanalysis, 2017, 23, 1360-1361.	0.2	0
268	The Role of Humic Substances in Abiotic Clay Mineral Transformation. Microscopy and Microanalysis, 2018, 24, 1384-1385.	0.2	0
269	Electron Microscopic Characterization of Mineral-Microbe Interactions. Microscopy and Microanalysis, 2019, 25, 2350-2351.	0.2	0
270	Low-dose HRTEM Study of Interstratified Clay Minerals. Microscopy and Microanalysis, 2019, 25, 2472-2473.	0.2	0