Cuiqing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969212/publications.pdf

Version: 2024-02-01

116156 81434 4,695 92 41 66 citations h-index g-index papers 93 93 93 4719 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Enhanced <scp>I</scp> -Serine Production from Glycerol by Integration with Thermodynamically Favorable <scp>d-</scp> Glycerate Oxidation. ACS Sustainable Chemistry and Engineering, 2022, 10, 2587-2592.	3.2	5
2	Coculture of <i>Gluconobacter oxydans</i> and <i>Escherichia coli</i> for 3,4-Dihydroxybutyric Acid Production from Xylose. ACS Sustainable Chemistry and Engineering, 2021, 9, 10809-10817.	3.2	8
3	Efficient 2,3-butanediol production from whey powder using metabolically engineered Klebsiella oxytoca. Microbial Cell Factories, 2020, 19, 162.	1.9	27
4	Pyruvate Production from Whey Powder by Metabolic Engineered <i>Klebsiella oxytoca</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 15275-15283.	2.4	6
5	Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Microbial Cell Factories, 2018, 17, 158.	1.9	10
6	Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metabolic Engineering, 2017, 41, 102-114.	3.6	46
7	Enzymatic Cascades for Efficient Biotransformation of Racemic Lactate Derived from Corn Steep Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 3456-3464.	3.2	22
8	Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici. Bioresource Technology, 2016, 216, 856-861.	4.8	23
9	Enzymatic Resolution by a <scp>d</scp> â€Lactate Oxidase Catalyzed Reaction for (<i>S</i>)â€2â€Hydroxycarboxylic Acids. ChemCatChem, 2016, 8, 2630-2633.	1.8	13
10	Biotechnological production of acetoin, a bio-based platform chemical, from a lignocellulosic resource by metabolically engineered Enterobacter cloacae. Green Chemistry, 2016, 18, 1560-1570.	4.6	45
11	NAD-Independent l-Lactate Dehydrogenase Required for l-Lactate Utilization in Pseudomonas stutzeri A1501. Journal of Bacteriology, 2015, 197, 2239-2247.	1.0	27
12	Complete genome sequence of Mycobacterium goodii X7B, a facultative thermophilic biodesulfurizing bacterium with industrial potential. Journal of Biotechnology, 2015, 212, 56-57.	1.9	12
13	Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2 R ,3 R) Tj ETQq $1\ 1\ 0.7$	/84314 rgl	BT /Overlock 1
14	Efficient Simultaneous Saccharification and Fermentation of Inulin to 2,3-Butanediol by Thermophilic Bacillus licheniformis ATCC 14580. Applied and Environmental Microbiology, 2014, 80, 6458-6464.	1.4	48
15	Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol. Metabolic Engineering, 2014, 23, 22-33.	3.6	132
16	Construction of a food-grade cell surface display system for Lactobacillus casei. Microbiological Research, 2014, 169, 733-740.	2.5	14
17	Microbial lactate utilization: enzymes, pathogenesis, and regulation. Trends in Microbiology, 2014, 22, 589-599.	3.5	59
18	Efficient Production of (R)-2-Hydroxy-4-Phenylbutyric Acid by Using a Coupled Reconstructed d-Lactate Dehydrogenase System. PLoS ONE, 2014, 9, e104204.	1.1	9

#	Article	IF	CITATIONS
19	Production of hydroxypyruvate from glycerate by a novel biotechnological route. Bioresource Technology, 2013, 131, 552-554.	4.8	1
20	A newly isolated Bacillus licheniformisstrain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnology for Biofuels, 2013, 6, 123.	6.2	87
21	Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations. Water Research, 2013, 47, 683-692.	5.3	2
22	Characterization of a Novel Metagenome-Derived 6-Phospho-Î ² -Glucosidase from Black Liquor Sediment. Applied and Environmental Microbiology, 2013, 79, 2121-2127.	1.4	13
23	New Constitutive Vectors: Useful Genetic Engineering Tools for Biocatalysis. Applied and Environmental Microbiology, 2013, 79, 2836-2840.	1.4	32
24	Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. Biotechnology for Biofuels, 2013, 6, 155.	6.2	39
25	Genome Sequence of Pseudomonas stutzeri SDM-LAC, a Typical Strain for Studying the Molecular Mechanism of Lactate Utilization. Journal of Bacteriology, 2012, 194, 894-895.	1.0	21
26	Relative Catalytic Efficiency of <i>ldhL</i> - and <i>ldhD</i> -Encoded Products Is Crucial for Optical Purity of Lactic Acid Produced by Lactobacillus Strains. Applied and Environmental Microbiology, 2012, 78, 3480-3483.	1.4	29
27	Genome Sequence of the Lactate-Utilizing Pseudomonas aeruginosa Strain XMG. Journal of Bacteriology, 2012, 194, 4751-4752.	1.0	16
28	Genome Sequences of Two Thermophilic Bacillus licheniformis Strains, Efficient Producers of Platform Chemical 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 4133-4134.	1.0	16
29	Genome Sequence of Klebsiella pneumoniae LZ, a Potential Platform Strain for 1,3-Propanediol Production. Journal of Bacteriology, 2012, 194, 4457-4458.	1.0	7
30	Lactate Utilization Is Regulated by the FadR-Type Regulator LldR in Pseudomonas aeruginosa. Journal of Bacteriology, 2012, 194, 2687-2692.	1.0	50
31	Genome Sequence of Enterobacter cloacae subsp. dissolvens SDM, an Efficient Biomass-Utilizing Producer of Platform Chemical 2,3-Butanediol. Journal of Bacteriology, 2012, 194, 897-898.	1.0	23
32	Genome Sequence of Xanthomonas campestris JX, an Industrially Productive Strain for Xanthan Gum. Journal of Bacteriology, 2012, 194, 4755-4756.	1.0	29
33	NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM. PLoS ONE, 2012, 7, e36519.	1.1	30
34	Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM. PLoS ONE, 2012, 7, e40755.	1.1	8
35	Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli. Bioresource Technology, 2012, 115, 111-116.	4.8	66
36	Efficient bioconversion of l-threonine to 2-oxobutyrate using whole cells of Pseudomonas stutzeri SDM. Bioresource Technology, 2012, 110, 719-722.	4.8	11

#	Article	IF	CITATIONS
37	Purification and characterization of a flavin reductase from the biodesulfurizing bacterium Mycobacterium goodii X7B. Process Biochemistry, 2012, 47, 1144-1149.	1.8	7
38	Efficient 2,3-Butanediol Production from Cassava Powder by a Crop-Biomass-Utilizer, Enterobacter cloacae subsp. dissolvens SDM. PLoS ONE, 2012, 7, e40442.	1.1	42
39	Transcription Elongation Factor GreA Has Functional Chaperone Activity. PLoS ONE, 2012, 7, e47521.	1.1	35
40	Genome Sequence of the Thermophilic Strain Bacillus coagulans2-6, an Efficient Producer of High-Optical-Purity <scp>I</scp> -Lactic Acid. Journal of Bacteriology, 2011, 193, 4563-4564.	1.0	20
41	Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 2011, 29, 930-939.	6.0	248
42	Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Applied Microbiology and Biotechnology, 2011, 89, 1009-1017.	1.7	114
43	Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent l-lactate dehydrogenase. Bioresource Technology, 2011, 102, 4595-4599.	4.8	32
44	Genome Sequence of Sphingomonas elodea ATCC 31461, a Highly Productive Industrial Strain of Gellan Gum. Journal of Bacteriology, 2011, 193, 7015-7016.	1.0	18
45	Genome Sequence of Rhodococcus erythropolis XP, a Biodesulfurizing Bacterium with Industrial Potential. Journal of Bacteriology, 2011, 193, 6422-6423.	1.0	34
46	Production of <i>N</i> -Acetyl- <scp>d</scp> -Neuraminic Acid by Use of an Efficient Spore Surface Display System. Applied and Environmental Microbiology, 2011, 77, 3197-3201.	1.4	46
47	Genome Sequence of Pseudomonas putida Strain B6-2, a Superdegrader of Polycyclic Aromatic Hydrocarbons and Dioxin-Like Compounds. Journal of Bacteriology, 2011, 193, 6789-6790.	1.0	34
48	Chemoenzymatic Synthesis of $\langle i \rangle N \langle i \rangle$ -Acetyl- $\langle scp \rangle d \langle scp \rangle$ -Neuraminic Acid from $\langle i \rangle N \langle i \rangle$ -Acetyl- $\langle scp \rangle d \langle scp \rangle$ -Clucosamine by Using the Spore Surface-Displayed $\langle i \rangle N \langle i \rangle$ -Acetyl- $\langle scp \rangle d \langle scp \rangle$ -Neuraminic Acid Aldolase. Applied and Environmental Microbiology, 2011, 77, 7080-7083.	1.4	17
49	Genome Sequence of Lactobacillus rhamnosus Strain CASL, an Efficient <scp>l</scp> -Lactic Acid Producer from Cheap Substrate Cassava. Journal of Bacteriology, 2011, 193, 7013-7014.	1.0	7
50	Efficient Conversion of Phenylpyruvic Acid to Phenyllactic Acid by Using Whole Cells of Bacillus coagulans SDM. PLoS ONE, 2011, 6, e19030.	1.1	71
51	An efficient method for N-acetyl-d-neuraminic acid production using coupled bacterial cells with a safe temperature-induced system. Applied Microbiology and Biotechnology, 2010, 86, 481-489.	1.7	42
52	Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Applied Microbiology and Biotechnology, 2010, 87, 965-970.	1.7	90
53	Biotechnological production and applications of N-acetyl-d-neuraminic acid: current state and perspectives. Applied Microbiology and Biotechnology, 2010, 87, 1281-1289.	1.7	46
54	Cloning, expression, purification, and activity assay of proteins related to D-lactic acid formation in Lactobacillus rhamnosus. Applied Microbiology and Biotechnology, 2010, 87, 2117-2123.	1.7	7

#	Article	IF	Citations
55	Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology and Biotechnology, 2010, 37, 495-501.	1.4	170
56	Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation, 2010, 21, 97-105.	1.5	76
57	Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases. Process Biochemistry, 2010, 45, 1912-1915.	1.8	16
58	Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils. Bioresource Technology, 2010, 101, 8452-8456.	4.8	114
59	A Novel Whole-Cell Biocatalyst with NAD+ Regeneration for Production of Chiral Chemicals. PLoS ONE, 2010, 5, e8860.	1.1	124
60	Non-Sterilized Fermentative Production of Polymer-Grade L-Lactic Acid by a Newly Isolated Thermophilic Strain Bacillus sp. 2–6. PLoS ONE, 2009, 4, e4359.	1.1	103
61	Acetoin Catabolism and Acetylbutanediol Formation by Bacillus pumilus in a Chemically Defined Medium. PLoS ONE, 2009, 4, e5627.	1.1	30
62	Characterization of benzoate degradation by newly isolated bacterium Pseudomonas sp. XP-M2. Biochemical Engineering Journal, 2009, 46, 79-82.	1.8	10
63	Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Applied Microbiology and Biotechnology, 2009, 82, 49-57.	1.7	219
64	Enantioselective oxidation of racemic lactic acid to d-lactic acid and pyruvic acid by Pseudomonas stutzeri SDM. Bioresource Technology, 2009, 100, 1878-1880.	4.8	35
65	New Metabolites in Dibenzofuran Cometabolic Degradation by a Biphenyl-Cultivated <i>Pseudomonas putida</i> Strain B6-2. Environmental Science & Enviro	4.6	45
66	A Novel Gene, Encoding 6-Hydroxy-3-Succinoylpyridine Hydroxylase, Involved in Nicotine Degradation by <i>Pseudomonas putida</i> Strain S16. Applied and Environmental Microbiology, 2008, 74, 1567-1574.	1.4	63
67	Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites. Journal of Biotechnology, 2007, 130, 463-470.	1.9	94
68	Orotate Phosphoribosyltransferase from <i>Corynebacterium ammoniagenes</i> Lacking a Conserved Lysine. Journal of Bacteriology, 2007, 189, 9030-9036.	1.0	8
69	Cometabolic Degradation of Dibenzofuran and Dibenzothiophene by a Newly Isolated Carbazole-Degrading Sphingomonas sp. Strain. Applied and Environmental Microbiology, 2007, 73, 2832-2838.	1.4	80
70	Efficient Wholeâ€Cell Biocatalytic Synthesis of <i>N</i> â€Acetylâ€ <scp>D</scp> â€neuraminic Acid. Advanced Synthesis and Catalysis, 2007, 349, 1614-1618.	2.1	39
71	Microbial transformation of propenylbenzenes for natural flavour production. Trends in Biotechnology, 2007, 25, 571-576.	4.9	95
72	Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production. Applied Microbiology and Biotechnology, 2007, 74, 563-571.	1.7	83

#	Article	IF	CITATIONS
73	Enhanced vanillin production from ferulic acid using adsorbent resin. Applied Microbiology and Biotechnology, 2007, 74, 783-790.	1.7	122
74	Production of uridine 5′-monophosphate by Corynebacterium ammoniagenes ATCC 6872 using a statistically improved biocatalytic process. Applied Microbiology and Biotechnology, 2007, 76, 321-328.	1.7	24
75	Membrane-bound I- and d-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Applied Microbiology and Biotechnology, 2007, 77, 91-98.	1.7	46
76	Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain. Applied and Environmental Microbiology, 2006, 72, 54-58.	1.4	142
77	Simultaneous Biodetoxification of S, N, and O Pollutants by Engineering of a Carbazole-Degrading Gene Cassette in a Recombinant Biocatalyst. Applied and Environmental Microbiology, 2006, 72, 7373-7376.	1.4	21
78	The Surfactant Tween 80 Enhances Biodesulfurization. Applied and Environmental Microbiology, 2006, 72, 7390-7393.	1.4	74
79	Biodesulfurization in Biphasic Systems Containing Organic Solvents. Applied and Environmental Microbiology, 2006, 72, 4604-4609.	1.4	73
80	Selective Biodegradation of S and N Heterocycles by a Recombinant Rhodococcus erythropolis Strain Containing Carbazole Dioxygenase. Applied and Environmental Microbiology, 2006, 72, 2235-2238.	1.4	33
81	Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends in Microbiology, 2006, 14, 398-405.	3.5	148
82	Microbial desulfurization of gasoline by free whole-cells of Rhodococcus erythropolis XP. FEMS Microbiology Letters, 2006, 258, 284-289.	0.7	36
83	Recovery of pyruvic acid from biotransformation solutions. Applied Microbiology and Biotechnology, 2006, 70, 308-314.	1.7	34
84	Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillussubtilis HS8. Applied Microbiology and Biotechnology, 2006, 73, 771-779.	1.7	56
85	Production of 2,3-Butanediol by Klebsiella Pneumoniae Using Glucose and Ammonium Phosphate. Chinese Journal of Chemical Engineering, 2006, 14, 132-136.	1.7	89
86	Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium. Applied and Environmental Microbiology, 2006, 72, 3367-3374.	1.4	72
87	Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System. Applied and Environmental Microbiology, 2005, 71, 276-281.	1.4	85
88	"Green―Route to 6-Hydroxy-3-succinoyl-pyridine from (S)-Nicotine of Tobacco Waste by Whole Cells of aPseudomonasÂsp Environmental Science & Technology, 2005, 39, 6877-6880.	4.6	67
89	An enzymatic route to produce pyruvate from lactate. Applied Microbiology and Biotechnology, 2004, 66, 34-39.	1.7	18
90	Deep desulfurization of hydrodesulfurization-treated diesel oil by a facultative thermophilic bacterium Mycobacterium sp. X7B. FEMS Microbiology Letters, 2003, 223, 301-307.	0.7	100

Cuiqing

#	Article	IF	CITATION
91	Highly Efficient Conversion of Lactate to Pyruvate Using Whole Cells of Acinetobacter sp Biotechnology Progress, 2003, 19, 1672-1676.	1.3	23
92	Biodesulfurization of Dibenzothiophene by a Newly Isolated Bacterium Mycobacterium sp. X7B. Journal of Chemical Engineering of Japan, 2003, 36, 1174-1177.	0.3	15