
VerÃ²nica Postils RibÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5969130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can aluminum, a non-redox metal, alter the thermodynamics of key biological redox processes? The DPPH-QH2 radical scavenging reaction as a test case. Free Radical Biology and Medicine, 2022, 179, 200-207.	1.3	2
2	Generation of multiple triplet states in an orthogonal bodipy dimer: a breakthrough spectroscopic and theoretical approach. Physical Chemistry Chemical Physics, 2022, 24, 5929-5938.	1.3	10
3	Mild Open-Shell Character of BODIPY and Its Impact on Singlet and Triplet Excitation Energies. Journal of Chemical Theory and Computation, 2021, 17, 5825-5838.	2.3	12
4	Efficient alkene hydrosilation with bis(8-quinolyl)phosphine (NPN) nickel catalysts. The dominant role of silyl-over hydrido-nickel catalytic intermediates. Chemical Science, 2020, 11, 5043-5051.	3.7	7
5	Fluoreno[2,1-a]fluorene: an ortho-naphthoquinodimethane-based system with partial diradical character. Chemical Communications, 2019, 55, 14186-14189.	2.2	15
6	Metal Cluster Electrides: A New Type of Molecular Electride with Delocalised Polyattractor Character. Chemistry - A European Journal, 2018, 24, 9853-9859.	1.7	28
7	Mechanism of the Selective Fe-Catalyzed Arene Carbon–Hydrogen Bond Functionalization. ACS Catalysis, 2018, 8, 4313-4322.	5.5	32
8	An Objective Alternative to IUPAC's Approach To Assign Oxidation States. Angewandte Chemie - International Edition, 2018, 57, 10525-10529.	7.2	43
9	An Objective Alternative to IUPAC's Approach To Assign Oxidation States. Angewandte Chemie, 2018, 130, 10685-10689.	1.6	23
10	Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes. International Journal of Molecular Sciences, 2018, 19, 1974.	1.8	14
11	Reactivity Patterns of (Protonated) Compoundâ€II and Compoundâ€I of Cytochrome P450: Which is the Better Oxidant?. Chemistry - A European Journal, 2017, 23, 6406-6418.	1.7	71
12	Iron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie - International Edition, 2016, 55, 6530-6534.	7.2	77
13	lron and Manganese Catalysts for the Selective Functionalization of Arene C(sp ²)â^'H Bonds by Carbene Insertion. Angewandte Chemie, 2016, 128, 6640-6644.	1.6	29
14	On the existence and characterization of molecular electrides. Chemical Communications, 2015, 51, 4865-4868.	2.2	68
15	Oxidation States from Wave Function Analysis. Journal of Chemical Theory and Computation, 2015, 11, 1501-1508.	2.3	78
16	Computational Insight into the Mechanism of Alkane Hydroxylation by Non-heme Fe(PyTACN) Iron Complexes. Effects of the Substrate and Solvent. Inorganic Chemistry, 2015, 54, 8223-8236.	1.9	24
17	The Mechanism of Stereospecific CH Oxidation by Fe(Pytacn) Complexes: Bioinspired Nonâ€Heme Iron Catalysts Containing <i>cis</i> â€Labile Exchangeable Sites. Chemistry - A European Journal, 2013, 19, 6724-6738.	1.7	88