Cristina Palet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5968996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 2019, 9, 9869.	3.3	112
2	Enhancement of selective adsorption of Cr species via modification of pine biomass. Science of the Total Environment, 2021, 756, 143816.	8.0	52
3	Synthesis and adsorption behavior of mesoporous alumina and Fe-doped alumina for the removal of dominant arsenic species in contaminated waters. Journal of Environmental Chemical Engineering, 2019, 7, 102901.	6.7	50
4	Bioseparation of Pb(II) and Cd(II) from aqueous solution using cork waste biomass. Modeling and optimization of the parameters of the biosorption step. Chemical Engineering Journal, 2011, 174, 9-17.	12.7	45
5	Comparative study of hybrid and activated composite membranes containing Aliquat 336 for the transport of Pt(IV). Journal of Membrane Science, 2008, 311, 235-242.	8.2	32
6	Valorization of keratin biofibers for removing heavy metals from aqueous solutions. Textile Reseach Journal, 2019, 89, 1153-1165.	2.2	22
7	Pre-concentration of Uranium (VI) using bulk liquid and supported liquid membrane systems optimized containing bis(2-ethylhexyl) phosphoric acid as carrier in low concentrations. Separation and Purification Technology, 2013, 120, 172-179.	7.9	16
8	Use of Chemically Treated Human Hair Wastes for the Removal of Heavy Metal Ions from Water. Water (Switzerland), 2020, 12, 1263.	2.7	11
9	Metal affinity liquid membrane. Analytica Chimica Acta, 2000, 403, 101-115.	5.4	9
10	Selective transport of platinum(IV) and palladium(II) through hybrid and activated composite membranes containing Aliquat 336. Desalination, 2006, 200, 100-102.	8.2	8
11	Doehlert experimental design as a tool to study liquid–liquid systems for the recovery of Uranium (VI) traces. Separation and Purification Technology, 2013, 118, 399-405.	7.9	8
12	Cellular strategies against metal exposure and metal localization patterns linked to phosphorus pathways in Ochrobactrum anthropi DE2010. Journal of Hazardous Materials, 2021, 402, 123808.	12.4	8
13	Disposal of wooden wastes used as heavy metal adsorbents as components of building bricks. Journal of Building Engineering, 2021, 40, 102371.	3.4	6
14	Composite Electrodes Based on Carbon Materials Decorated with Hg Nanoparticles for the Simultaneous Detection of Cd(II), Pb(II) and Cu(II). Chemosensors, 2022, 10, 148.	3.6	6
15	Near infrared spectroscopy: A novel technique for classifying and characterizing polysulfone membranes. Journal of Membrane Science, 2007, 300, 122-130.	8.2	5
16	Evaluation of low-cost geo-adsorbents for As(V) removal. Environmental Technology and Innovation, 2021, 21, 101341.	6.1	4
17	Coffee Husk and Lignin Revalorization: Modification with Ag Nanoparticles for Heavy Metals Removal and Antifungal Assays. Water (Switzerland), 2022, 14, 1796.	2.7	4
18	Insights of microorganisms role in rice and rapeseed wastes as potential sorbents for metal removal. International Journal of Environmental Science and Technology, 0, , 1.	3.5	3

#	Article	IF	CITATIONS
19	Customized In Situ Functionalization of Nanodiamonds with Nanoparticles for Composite Carbon-Paste Electrodes. Nanomaterials, 2020, 10, 1179.	4.1	1
20	Tunable Electrochemical Sensors Based on Carbon Nanocomposite Materials towards Enhanced Determination of Cadmium, Lead and Copper in Water. Chemistry Proceedings, 2021, 5, .	0.1	0