
Vytautas Stuikys

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5968439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Personal Generative Library for STEM-Driven Educational Resources. , 2018, , 233-257.		Ο
2	Theoretical Background to Implement STEM-Driven Approaches. , 2018, , 99-132.		0
3	Stage-Based Smart Learning Objects: Adaptation Perspective. , 2018, , 189-216.		Ο
4	A Finalizing Discussion and Open Issues. , 2018, , 347-363.		0
5	Model-Driven Design and Redesign of Smart STEM-Driven CS Content. , 2018, , 157-187.		Ο
6	Agent-Based GLOs/SLOs for STEM. , 2018, , 217-229.		0
7	Understanding of Smart Content for STEM-Driven CS Education. , 2018, , 135-155.		Ο
8	Robot-Oriented Generative Learning Objects: An Agent-Based Vision. Smart Innovation, Systems and Technologies, 2016, , 247-257.	0.6	3
9	Smart Education in CS: A Case Study. , 2015, , 287-310.		5
10	Authoring Tools to Specialize and Adapt Smart LOs. , 2015, , 237-263.		0
11	Authoring Tools to Design Smart LOs. , 2015, , 211-236.		0
12	Reuse Framework of the LO Lo Domain. , 2015, , 55-73.		0
13	A Vision of Smart Teaching in CS. , 2015, , 3-32.		2
14	Enhanced Features of SLOs: Focus on Specialization. , 2015, , 141-159.		0
15	Modelling of CS Teaching and Learning in Large. , 2015, , 75-101.		Ο
16	Understanding of LO Lo Domain Through Its Taxonomies. , 2015, , 33-53.		0
17	Background to Design Smart LOs and Supporting Tools. , 2015, , 185-209.		1
18	Model-Driven Specification in Designing Smart LOs. , 2015, , 103-122.		2

VYTAUTAS STUIKYS

#	Article	IF	CITATIONS
19	Smart LOs Design: Higher-Level Coding and Testing Aspects. , 2015, , 123-140.		О
20	Feature transformation-based computational model and tools for heterogeneous meta-program design. , 2014, , .		2
21	Generative Learning Object (GLO) Specialization: Teacher's and Learner's View. Communications in Computer and Information Science, 2014, , 291-301.	0.5	2
22	Meta-Programming and Model-Driven Meta-Program Development. Advanced Information and Knowledge Processing, 2013, , .	0.3	33
23	Homogeneous Meta-Programming Techniques with Case Study. Advanced Information and Knowledge Processing, 2013, , 49-77.	0.3	Ο
24	Complexity Evaluation of Feature Models and Meta-Programs. Advanced Information and Knowledge Processing, 2013, , 209-237.	0.3	0
25	Meta-Meta-Programming and Equivalent Transformations of Heterogeneous Meta-Programs. Advanced Information and Knowledge Processing, 2013, , 253-277.	0.3	Ο
26	Applications of Meta-Programming Methodology. Advanced Information and Knowledge Processing, 2013, , 291-316.	0.3	0
27	UNDERSTANDING OF HETEROGENEOUS MULTI-STAGE META-PROGRAMS. Information Technology and Control, 2012, 41, .	2.1	1
28	Metrics for evaluation of metaprogram complexity. Computer Science and Information Systems, 2010, 7, 769-787.	1.0	11
29	Specification and Generation of Learning Object Sequences for E-learning Using Sequence Feature Diagrams and Metaprogramming Techniques. , 2009, , .		12
30	Aggregating of Learning Object Units Derived from a Generative Learning Object. Informatics in Education, 2009, 8, 295-314.	2.2	5
31	Domain Ontology-Based Generative Component Design Using Feature Diagrams and Meta-programming Techniques. Lecture Notes in Computer Science, 2008, , 338-341.	1.3	4
32	Development of Generative Learning Objects Using Feature Diagrams and Generative Techniques. Informatics in Education, 2008, 7, 277-288.	2.2	16
33	Application of design patterns for hardware design. , 2003, , .		20
34	Metaprogramming Techniques for Designing Embedded Components for Ambient Intelligence. , 2003, , 229-250.		18
35	Wrapping of Soft IPs for Interfaceâ€based Design Using Heterogeneous Metaprogramming. Informatica, 2003, 14, 3-18.	2.7	11
36	Soft IP Design Framework Using Metaprogramming Techniques. IFIP Advances in Information and Communication Technology, 2002, , 257-266.	0.7	6

#	Article	IF	CITATIONS
37	Open PROMOL: An Experimental Language for Target Program Modification. , 2002, , 235-246.		13