Thazah P Prakash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5968387/publications.pdf

Version: 2024-02-01

45 papers

3,142 citations

172386 29 h-index 265120 42 g-index

46 all docs

46 docs citations

46 times ranked $\begin{array}{c} 2862 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary <i>N</i> -acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Research, 2014, 42, 8796-8807.	6.5	465
2	Positional Effect of Chemical Modifications on Short Interference RNA Activity in Mammalian Cells. Journal of Medicinal Chemistry, 2005, 48, 4247-4253.	2.9	259
3	Single-Stranded siRNAs Activate RNAi in Animals. Cell, 2012, 150, 883-894.	13.5	239
4	Short Antisense Oligonucleotides with Novel 2′â^'4′ Conformationaly Restricted Nucleoside Analogues Show Improved Potency without Increased Toxicity in Animals. Journal of Medicinal Chemistry, 2009, 52, 10-13.	2.9	236
5	Synthesis and Biophysical Evaluation of $2\hat{a}\in ^2$, $4\hat{a}\in ^2$ -Constrained $2\hat{a}\in ^2$ < i>O < /i>-Methoxyethyl and $2\hat{a}\in ^2$ -Const $2\hat{a}\in ^2$ < i>O < /i>-Ethyl Nucleic Acid Analogues. Journal of Organic Chemistry, 2010, 75, 1569-1581.	rained	182
6	An Overview of Sugarâ€Modified Oligonucleotides for Antisense Therapeutics. Chemistry and Biodiversity, 2011, 8, 1616-1641.	1.0	170
7	Targeted delivery of antisense oligonucleotides to pancreatic β-cells. Science Advances, 2018, 4, eaat3386.	4.7	132
8	Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Research, 2017, 45, 12388-12400.	6.5	111
9	Comprehensive Structure–Activity Relationship of Triantennary <i>N</i> -Acetylgalactosamine Conjugated Antisense Oligonucleotides for Targeted Delivery to Hepatocytes. Journal of Medicinal Chemistry, 2016, 59, 2718-2733.	2.9	107
10	Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Research, 2019, 47, 6029-6044.	6.5	93
11	TCP1 complex proteins interact with phosphorothioate oligonucleotides and can co-localize in oligonucleotide-induced nuclear bodies in mammalian cells. Nucleic Acids Research, 2014, 42, 7819-7832.	6.5	80
12	Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor. Nucleic Acids Research, 2017, 45, 2294-2306.	6.5	72
13	Efficient Synthesis and Biological Evaluation of 5′-GalNAc Conjugated Antisense Oligonucleotides. Bioconjugate Chemistry, 2015, 26, 1451-1455.	1.8	68
14	Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity. Nucleic Acids Research, 2016, 44, 3892-3907.	6.5	65
15	Antisense oligonucleotides targeting mutant Ataxin-7 restore visual function in a mouse model of spinocerebellar ataxia type 7. Science Translational Medicine, 2018, 10, .	5.8	63
16	2â€~-O-[2-(Guanidinium)ethyl]-Modified Oligonucleotides:  Stabilizing Effect on Duplex and Triplex Structuresâ€. Organic Letters, 2004, 6, 1971-1974.	2.4	55
17	Argonaute 2-dependent Regulation of Gene Expression by Single-stranded miRNA Mimics. Molecular Therapy, 2016, 24, 946-955.	3.7	51
18	Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver. Nucleic Acid Therapeutics, 2018, 28, 119-127.	2.0	49

#	Article	IF	CITATIONS
19	Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides Into Cells. Nucleic Acid Therapeutics, 2019, 29, 245-255.	2.0	48
20	Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Research, 2019, 47, 6045-6058.	6.5	48
21	Overcoming the challenges of tissue delivery for oligonucleotide therapeutics. Trends in Pharmacological Sciences, 2021, 42, 588-604.	4.0	47
22	Elucidation of the Biotransformation Pathways of a Galnac3-conjugated Antisense Oligonucleotide in Rats and Monkeys. Molecular Therapy - Nucleic Acids, 2016, 5, e319.	2.3	46
23	Lipid Nanoparticles Improve Activity of Single-Stranded siRNA and Gapmer Antisense Oligonucleotides in Animals. ACS Chemical Biology, 2013, 8, 1402-1406.	1.6	41
24	Glucagon Like Peptide 1 Receptor Agonists for Targeted Delivery of Antisense Oligonucleotides to Pancreatic Beta Cell. Journal of the American Chemical Society, 2021, 143, 3416-3429.	6.6	39
25	N-(2-Cyanoethoxycarbonyloxy)succinimide:Â A New Reagent for Protection of Amino Groups in Oligonucleotides. Journal of Organic Chemistry, 1999, 64, 6468-6472.	1.7	38
26	<i>Chop</i> / <i> Ddit3</i> depletion in \hat{I}^2 cells alleviates ER stress and corrects hepatic steatosis in mice. Science Translational Medicine, 2021, 13, .	5.8	38
27	Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3690-3693.	1.0	36
28	Synthesis and Evaluation of S-Acyl-2-thioethyl Esters of Modified Nucleoside 5â€~-Monophosphates as Inhibitors of Hepatitis C Virus RNA Replication. Journal of Medicinal Chemistry, 2005, 48, 1199-1210.	2.9	34
29	2 -O-[2-(Methylthio)ethyl]-Modified Oligonucleotide: An Analogue of 2 -O-[2-(Methoxy)-ethyl]-Modified Oligonucleotide with Improved Protein Binding Properties and High Binding Affinity to Target RNAâ€. Biochemistry, 2002, 41, 11642-11648.	1.2	33
30	Mechanisms of palmitic acid-conjugated antisense oligonucleotide distribution in mice. Nucleic Acids Research, 2020, 48, 4382-4395.	6.5	33
31	Targeted Delivery of Antisense Oligonucleotides Using Neurotensin Peptides. Journal of Medicinal Chemistry, 2020, 63, 8471-8484.	2.9	27
32	RNA interference by 2′,5′-linked nucleic acid duplexes in mammalian cells. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3238-3240.	1.0	26
33	Site-specific incorporation of 5′-methyl DNA enhances the therapeutic profile of gapmer ASOs. Nucleic Acids Research, 2021, 49, 1828-1839.	6.5	26
34	Solid-phase synthesis of 5′-triantennary N-acetylgalactosamine conjugated antisense oligonucleotides using phosphoramidite chemistry. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4127-4130.	1.0	21
35	Evaluation of the effect of 2′-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3774-3779.	1.0	16
36	Site-specific Incorporation of 2′,5′-Linked Nucleic Acids Enhances Therapeutic Profile of Antisense Oligonucleotides. ACS Medicinal Chemistry Letters, 2021, 12, 922-927.	1.3	13

#	Article	IF	CITATIONS
37	A convenient synthesis of $5\hat{a}\in^2$ -triantennary N-acetyl-galactosamine clusters based on nitromethanetrispropionic acid. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2194-2197.	1.0	9
38	$2\hat{a}$ €²-DMAOE RNA: Emerging Oligonucleotides with Promising Antisense Properties. Nucleosides & Nucleotides, 1999, 18, 1381-1382.	0.5	8
39	Carbohydrate Modifications in Antisense Oligonucleotide Therapy: New Kids on the Block. Nucleosides & Nucleotides, 1999, 18, 1737-1746.	0.5	6
40	Synthesis, Hybridization, and Nuclease Resistance Properties of 2′-O-Aminooxyethyl Modified Oligonucleotides. Nucleosides & Nucleotides, 1999, 18, 1419-1420.	0.5	3
41	A New Protecting Group Strategy for Amino Groups in Oligonucleotide Chemistry: CEOC Group. Nucleosides & Nucleotides, 1999, 18, 1199-1201.	0.5	3
42	Effect of $2\hat{a} \in \mathbb{C}^2$ - O -[2-[2-(N , N -dimethylamino)ethoxy]ethyl] modification on activity of gapmer antisense oligonucleotides containing $2\hat{a} \in \mathbb{C}^2$ -constrained $2\hat{a} \in \mathbb{C}^2$ - O -ethyl nucleic acid. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1688-1691.	1.0	3
43	Targeted Delivery of Antisense Oligonucleotides Through Angiotensin Type 1 Receptor. Nucleic Acid Therapeutics, 0, , .	2.0	2
44	S-Acyl-2-Thioethyl: A Convenient Base-Labile Protecting Group for the Synthesis of siRNAs Containing $5\hat{a}\in^2$ -Vinylphosphonate. Molecules, 2019, 24, 225.	1.7	0
45	Subâ€organ Fractionation of Hepatic Cells after Antisense Oligonucleotide Treatment in Mice. FASEB Journal, 2018, 32, 760.11.	0.2	0