
Utpal Banerjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/596720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair. Journal of Clinical Investigation, 2022, 132, .	3.9	16
2	Injury-induced inflammatory signaling and hematopoiesis in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119109119.	3.3	15
3	A functional genomics screen identifying blood cell development genes in <i>Drosophila</i> by undergraduates participating in a course-based research experience. G3: Genes, Genomes, Genetics, 2021, 11, 1-23.	0.8	8
4	Metabolic plasticity drives development during mammalian embryogenesis. Developmental Cell, 2021, 56, 2329-2347.e6.	3.1	29
5	Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. ELife, 2021, 10, .	2.8	24
6	Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development (Cambridge), 2021, 148, .	1.2	9
7	Glycolysis-Independent Glucose Metabolism Distinguishes TE from ICM Fate during Mammalian Embryogenesis. Developmental Cell, 2020, 53, 9-26.e4.	3.1	97
8	<i>Drosophila</i> as a Genetic Model for Hematopoiesis. Genetics, 2019, 211, 367-417.	1.2	216
9	Expression-Based Cell Lineage Analysis in <i>Drosophila</i> Through a Course-Based Research Experience for Early Undergraduates. G3: Genes, Genomes, Genetics, 2019, 9, 3791-3800.	0.8	13
10	Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization. Cell, 2018, 175, 117-132.e21.	13.5	180
11	Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nature Communications, 2018, 9, 2679.	5.8	21
12	Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell, 2017, 168, 210-223.e11.	13.5	224
13	In vivo genetic dissection of tumor growth and the Warburg effect. ELife, 2016, 5, .	2.8	78
14	Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. Methods, 2014, 68, 242-251.	1.9	91
15	Dissection and Mounting of Drosophila Pupal Eye Discs. Journal of Visualized Experiments, 2014, , e52315.	0.2	7
16	Pvr expression regulators in equilibrium signal control and maintenance of Drosophila blood progenitors. ELife, 2014, 3, e03626.	2.8	53
17	Olfactory Control of Blood Progenitor Maintenance. Cell, 2013, 155, 1141-1153.	13.5	112
18	Variation of NimC1 expression in <i>Drosophila</i> stocks and transgenic strains. Fly, 2013, 7, 263-268.	0.9	20

UTPAL BANERJEE

#	Article	IF	CITATIONS
19	Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nature Cell Biology, 2012, 14, 394-400.	4.6	131
20	Oxidative stress in the haematopoietic niche regulates the cellular immune response in <i>Drosophila</i> . EMBO Reports, 2012, 13, 83-89.	2.0	99
21	Interaction between Differentiating Cell- and Niche-Derived Signals in Hematopoietic Progenitor Maintenance. Cell, 2011, 147, 1589-1600.	13.5	178
22	Interaction Between Notch and Hif-α in Development and Survival of <i>Drosophila</i> Blood Cells. Science, 2011, 332, 1210-1213.	6.0	170
23	chinmo Is a Functional Effector of the JAK/STAT Pathway that Regulates Eye Development, Tumor Formation, and Stem Cell Self-Renewal in Drosophila. Developmental Cell, 2010, 18, 556-568.	3.1	169
24	Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature, 2009, 461, 537-541.	13.7	638
25	G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nature Methods, 2009, 6, 603-605.	9.0	314
26	Dual Role of Wingless Signaling in Stem-like Hematopoietic Precursor Maintenance in Drosophila. Developmental Cell, 2009, 16, 756-763.	3.1	125
27	Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nature Genetics, 2008, 40, 356-361.	9.4	338
28	Combinatorial signaling in the specification of primary pigment cells in the Drosophila eye. Development (Cambridge), 2007, 134, 825-831.	1.2	65
29	A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature, 2007, 446, 320-324.	13.7	264
30	The Drosophila lymph gland as a developmental model of hematopoiesis. Development (Cambridge), 2005, 132, 2521-2533.	1.2	331
31	Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nature Genetics, 2004, 36, 1019-1023.	9.4	187
32	Thicker Than Blood. Developmental Cell, 2003, 5, 673-690.	3.1	384
33	A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes and Development, 2003, 17, 348-353.	2.7	197
34	Combinatorial Signaling in the Specification of Unique Cell Fates. Cell, 2000, 103, 75-85.	13.5	232
35	Specification of Drosophila Hematopoietic Lineage by Conserved Transcription Factors. Science, 2000, 288, 146-149.	6.0	441