Weiming Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5967031/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1511-1522.	0.4	22
2	Protein phosphatase 2A and complement component 4 are linked to the protective effect of <i>APOE</i> É>2 for Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2042-2054.	0.4	18
3	A comparison between tau and amyloid-β cerebrospinal fluid biomarkers in chronic traumatic encephalopathy and Alzheimer disease. Alzheimer's Research and Therapy, 2022, 14, 28.	3.0	16
4	Blood and brain transcriptome analysis reveals APOE genotype-mediated and immune-related pathways involved in Alzheimer disease. Alzheimer's Research and Therapy, 2022, 14, 30.	3.0	16
5	Clinical outcomes of COVIDâ€19 infection among patients with Alzheimer's disease or mild cognitive impairment. Alzheimer's and Dementia, 2022, 18, 911-923.	0.4	13
6	Role of Pharmacological Modulation of Tonic Inhibition in Hippocampal Sharp Wave Ripples Amplitude and Place Cell Firing Dynamics. FASEB Journal, 2022, 36, .	0.2	0
7	Clinical Staging of Alzheimer's Disease: Concordance of Subjective and Objective Assessments in the Veteran's Affairs Healthcare System. Neurology and Therapy, 2022, 11, 1341-1352.	1.4	3
8	The association of COVID-19 occurrence and severity with the use of angiotensin converting enzyme inhibitors or angiotensin-II receptor blockers in patients with hypertension. PLoS ONE, 2021, 16, e0248652.	1.1	15
9	Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells, 2021, 10, 1069.	1.8	23
10	Longitudinal analysis of antibody decay in convalescent COVID-19 patients. Scientific Reports, 2021, 11, 16796.	1.6	18
11	Prodromal dysfunction of α5GABA-A receptor modulated hippocampal ripples occurs prior to neurodegeneration in the TgF344-AD rat model of Alzheimer's disease. Heliyon, 2021, 7, e07895.	1.4	8
12	Developmental Pathogenicity of 4-Repeat Human Tau Is Lost with the P301L Mutation in Genetically Matched Tau-Transgenic Mice. Journal of Neuroscience, 2020, 40, 220-236.	1.7	11
13	Diagnosis of Alzheimer's disease using laser-induced breakdown spectroscopy and machine learning. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105931.	1.5	23
14	CCL2 is associated with microglia and macrophage recruitment in chronic traumatic encephalopathy. Journal of Neuroinflammation, 2020, 17, 370.	3.1	40
15	Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 137.	1.4	73
16	Neurofilament light chain in the vitreous humor of the eye. Alzheimer's Research and Therapy, 2020, 12, 111.	3.0	13
17	Proteomic Profiling of Plasma and Brain Tissue from Alzheimer's Disease Patients Reveals Candidate Network of Plasma Biomarkers. Journal of Alzheimer's Disease, 2020, 76, 349-368.	1.2	31
18	Amyloid-β42/40 ratio drives tau pathology in 3D human neural cell culture models of Alzheimer's disease. Nature Communications, 2020, 11, 1377.	5.8	88

#	Article	IF	CITATIONS
19	Assessment of separation methods for extracellular vesicles from human and mouse brain tissues and human cerebrospinal fluids. Methods, 2020, 177, 35-49.	1.9	44
20	Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E Îμ4 genotype. Scientific Reports, 2020, 10, 2924.	1.6	40
21	OCIAD1 contributes to neurodegeneration in Alzheimer's disease by inducing mitochondria dysfunction, neuronal vulnerability and synaptic damages. EBioMedicine, 2020, 51, 102569.	2.7	10
22	Proteomic and biological profiling of extracellular vesicles from Alzheimer's disease human brain tissues. Alzheimer's and Dementia, 2020, 16, 896-907.	0.4	105
23	Beneficial association of angiotensin-converting enzyme inhibitors and statins on the occurrence of possible Alzheimer's disease after traumatic brain injury. Alzheimer's Research and Therapy, 2020, 12, 33.	3.0	15
24	Genomics of Alzheimer's disease. , 2020, , 3-18.		0
25	Multi-Focal Neuronal Ultrastructural Abnormalities and Synaptic Alterations in Mice after Low-Intensity Blast Exposure. Journal of Neurotrauma, 2019, 36, 2117-2128.	1.7	16
26	Contact sport participation and chronic traumatic encephalopathy are associated with altered severity and distribution of cerebral amyloid angiopathy. Acta Neuropathologica, 2019, 138, 401-413.	3.9	26
27	Association of Cognitive Function with Amyloid-Î ² and Tau Proteins in the Vitreous Humor. Journal of Alzheimer's Disease, 2019, 68, 1429-1438.	1.2	22
28	Small Molecule Amyloid-β Protein Precursor Processing Modulators Lower Amyloid-β Peptide Levels via cKit Signaling. Journal of Alzheimer's Disease, 2019, 67, 1089-1106.	1.2	6
29	\hat{I}^3 -Secretase and its modulators: Twenty years and beyond. Neuroscience Letters, 2019, 701, 162-169.	1.0	46
30	BACE1 partial deletion induces synaptic plasticity deficit in adult mice. Scientific Reports, 2019, 9, 19877.	1.6	25
31	Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. Journal of Proteomics, 2018, 182, 21-33.	1.2	40
32	Amyloid β synaptotoxicity is Wntâ€₽CP dependent and blocked by fasudil. Alzheimer's and Dementia, 2018, 14, 306-317.	0.4	81
33	Proteomic Profiling of Mouse Brains Exposed to Blast-Induced Mild Traumatic Brain Injury Reveals Changes in Axonal Proteins and Phosphorylated Tau. Journal of Alzheimer's Disease, 2018, 66, 751-773.	1.2	48
34	A role for APP in Wnt signalling links synapse loss with β-amyloid production. Translational Psychiatry, 2018, 8, 179.	2.4	74
35	Lewy Body Pathology and Chronic Traumatic Encephalopathy Associated With Contact Sports. Journal of Neuropathology and Experimental Neurology, 2018, 77, 757-768.	0.9	74
36	An amylin analog used as a challenge test for Alzheimer's disease. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2017, 3, 33-43.	1.8	15

#	Article	IF	CITATIONS
37	Pharmacological and Toxicological Properties of the Potent Oral <i>γ</i> -Secretase Modulator BPN-15606. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 31-44.	1.3	36
38	Genomics of Alzheimer Disease. JAMA Neurology, 2016, 73, 867.	4.5	105
39	Peripheral blood mononuclear cell-converted induced pluripotent stem cells (iPSCs) from an early onset Alzheimer's patient. Stem Cell Research, 2016, 16, 213-215.	0.3	11
40	Potential of tocotrienols in the prevention and therapy of Alzheimer's disease. Journal of Nutritional Biochemistry, 2016, 31, 1-9.	1.9	33
41	Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0163072.	1.1	127
42	Natural Product and Natural Product-Derived Gamma Secretase Modulators from Actaea Racemosa Extracts. Medicines (Basel, Switzerland), 2015, 2, 127-140.	0.7	8
43	Molecular dynamics simulation study reveals potential substrate entry path into Î ³ -secretase/presenilin-1. Journal of Structural Biology, 2015, 191, 120-129.	1.3	41
44	Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathologica, 2015, 130, 21-34.	3.9	234
45	Induced pluripotent stem cells (iPSCs) derived from frontotemporal dementia patient's peripheral blood mononuclear cells. Stem Cell Research, 2015, 15, 325-327.	0.3	10
46	A New Iterative Triclass Thresholding Technique in Image Segmentation. IEEE Transactions on Image Processing, 2014, 23, 1038-1046.	6.0	118
47	Chronic treatment with anesthetic propofol attenuates β-amyloid protein levels in brain tissues of aged mice. Translational Neurodegeneration, 2014, 3, 8.	3.6	19
48	Chronic Treatment with Anesthetic Propofol Improves Cognitive Function and Attenuates Caspase Activation in Both Aged and Alzheimer's Disease Transgenic Mice. Journal of Alzheimer's Disease, 2014, 41, 499-513.	1.2	42
49	Computational techniques in zebrafish image processing and analysis. Journal of Neuroscience Methods, 2013, 213, 6-13.	1.3	11
50	Prenatal Lead Levels, Plasma Amyloid β Levels, and Gene Expression in Young Adulthood. Environmental Health Perspectives, 2012, 120, 702-707.	2.8	57
51	Relation Between Insulin, Insulin-related Factors, and Plasma Amyloid Beta Peptide Levels at Midlife in a Population-based Study. Alzheimer Disease and Associated Disorders, 2012, 26, 50-54.	0.6	9
52	γ-Secretase Modulator in Alzheimer's Disease: Shifting the End. Journal of Alzheimer's Disease, 2012, 31, 685-696.	1.2	32
53	Optimization of a Natural Product-Based Class of Î ³ -Secretase Modulators. Journal of Medicinal Chemistry, 2012, 55, 9270-9282.	2.9	44
54	Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model. Neurobiology of Aging, 2012, 33, 432.e1-432.e13.	1.5	24

#	Article	IF	CITATIONS
55	Initial Optimization of a New Series of Î ³ -Secretase Modulators Derived from a Triterpene Glycoside. ACS Medicinal Chemistry Letters, 2012, 3, 908-913.	1.3	23
56	RNAi-mediated knock-down of Dab and Numb attenuate AÎ ² levels via Î ³ -secretase mediated APP processing. Translational Neurodegeneration, 2012, 1, 8.	3.6	16
57	Modulation of Gamma-Secretase for the Treatment of Alzheimer's Disease. International Journal of Alzheimer's Disease, 2012, 2012, 1-10.	1.1	22
58	Detecting and analyzing differentially activated pathways in brain regions of Alzheimer's disease patients. Molecular BioSystems, 2011, 7, 1441.	2.9	30
59	The Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibitor CI-1011 Reverses Diffuse Brain Amyloid Pathology in Aged Amyloid Precursor Protein Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2010, 69, 777-788.	0.9	50
60	Chapter 2. Targeting Alzheimer's Î ³ -Secretase: Genetic and Chemical Modulation. RSC Drug Discovery Series, 2010, , 19-37.	0.2	2
61	Phenotypic analysis of images of zebrafish treated with Alzheimer's Î ³ -secretase inhibitors. BMC Biotechnology, 2010, 10, 24.	1.7	35
62	<i>In vivo</i> manifestation of Notch related phenotypes in zebrafish treated with Alzheimer's amyloid reducing γâ€secretase inhibitors. Journal of Neurochemistry, 2010, 113, 1200-1209.	2.1	9
63	Brain amyloid β protein and memory disruption in Alzheimer's disease. Neuropsychiatric Disease and Treatment, 2010, 6, 605.	1.0	22
64	Alzheimer's Disease-Linked Presenilin Mutation (PS1M146L) Induces Filamin Expression and γ-Secretase Independent Redistribution. Journal of Alzheimer's Disease, 2010, 22, 235-245.	1.2	12
65	A High-Throughput Analysis Method to Detect Regions of Interest and Quantify Zebrafish Embryo Images. Journal of Biomolecular Screening, 2010, 15, 1152-1159.	2.6	19
66	A Presenilin-1 Mutation Identified in Familial Alzheimer Disease with Cotton Wool Plaques Causes a Nearly Complete Loss of γ-Secretase Activity. Journal of Biological Chemistry, 2010, 285, 22350-22359.	1.6	75
67	L-3-n-Butylphthalide Improves Cognitive Impairment and Reduces Amyloid-Â in a Transgenic Model of Alzheimer's Disease. Journal of Neuroscience, 2010, 30, 8180-8189.	1.7	122
68	Exploring Alzheimer's Disease in Zebrafish. Journal of Alzheimer's Disease, 2010, 20, 981-990.	1.2	26
69	Dynamically dysfunctional protein interactions in the development of Alzheimer's disease. , 2009, , .		7
70	The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases β-Amyloid Protein Levels. Archives of Neurology, 2009, 66, 620-31.	4.9	228
71	A Specific Enzyme-Linked Immunosorbent Assay for Measuring β-Amyloid Protein Oligomers in Human Plasma and Brain Tissue of Patients With Alzheimer Disease. Archives of Neurology, 2009, 66, 190-9.	4.9	182
72	Bioluminescence imaging reveals inhibition of tumor cell proliferation by Alzheimer's amyloid β protein. Cancer Cell International, 2009, 9, 15.	1.8	24

#	Article	IF	CITATIONS
73	Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains. Molecular Neurodegeneration, 2009, 4, 12.	4.4	59
74	Dissembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients. Molecular Neurodegeneration, 2009, 4, 23.	4.4	30
75	Performance Characteristics of Plasma Amyloid-β 40 and 42 Assays. Journal of Alzheimer's Disease, 2009, 16, 277-285.	1.2	28
76	Numerical Simulation of Blind Hole Bolt Connection with 3-D Finite Element Approach. , 2009, , .		4
77	Ten-Year Change in Plasma Amyloid β Levels and Late-Life Cognitive Decline. Archives of Neurology, 2009, 66, 1247-53.	4.9	49
78	Feature-based image analysis of zebrafish embryonic images. Proceedings of SPIE, 2009, , .	0.8	0
79	An Automated Method for Cell Detection in Zebrafish. Neuroinformatics, 2008, 6, 5-21.	1.5	35
80	Workflow and Methods of High-Content Time-Lapse Analysis for Quantifying Intracellular Calcium Signals. Neuroinformatics, 2008, 6, 97-108.	1.5	4
81	A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Annals of Neurology, 2008, 63, 591-601.	2.8	47
82	Quantification of gamma-secretase modulation differentiates inhibitor compound selectivity between two substrates Notch and amyloid precursor protein. Molecular Brain, 2008, 1, 15.	1.3	47
83	The Inhalation Anesthetic Desflurane Induces Caspase Activation and Increases Amyloid β-Protein Levels under Hypoxic Conditions. Journal of Biological Chemistry, 2008, 283, 11866-11875.	1.6	92
84	From Presenilinase to γ-Secretase, Cleave to Capacitate. Current Alzheimer Research, 2008, 5, 172-178.	0.7	18
85	RNA Interference Silencing of the Adaptor Molecules ShcC and Fe65 Differentially Affect Amyloid Precursor Protein Processing and Aβ Generation. Journal of Biological Chemistry, 2007, 282, 4318-4325.	1.6	48
86	HtrA2 Regulates β-Amyloid Precursor Protein (APP) Metabolism through Endoplasmic Reticulum-associated Degradation. Journal of Biological Chemistry, 2007, 282, 28285-28295.	1.6	64
87	The Inhalation Anesthetic Isoflurane Induces a Vicious Cycle of Apoptosis and Amyloid Â-Protein Accumulation. Journal of Neuroscience, 2007, 27, 1247-1254.	1.7	224
88	Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 835-845.	1.1	27
89	Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF Transport and Causes Cholinergic Neuron Degeneration. Neuron, 2006, 51, 29-42.	3.8	488
90	Zebrafish lacking Alzheimer presenilin enhancer 2 (Pen-2) demonstrate excessive p53-dependent apoptosis and neuronal loss. Journal of Neurochemistry, 2006, 96, 1423-1440.	2.1	120

#	Article	IF	CITATIONS
91	Presenilin-1-mediated Retention of APP Derivatives in Early Biosynthetic Compartments. Traffic, 2006, 7, 354-364.	1.3	20
92	The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-β production. Nature, 2006, 440, 528-534.	13.7	444
93	Computerized image analysis for quantitative neuronal phenotyping in zebrafish. Journal of Neuroscience Methods, 2006, 153, 190-202.	1.3	30
94	The Cytosolic Loop of the Î ³ -Secretase Component Presenilin Enhancer 2 Protects Zebrafish Embryos from Apoptosis. Journal of Biological Chemistry, 2006, 281, 11933-11939.	1.6	25
95	Characterization of presenilin-amyloid precursor interaction using bacterial expression and two-hybrid systems for human membrane proteins. Molecular Membrane Biology, 2004, 21, 373-383.	2.0	6
96	Dimerization of Parkinson's disease-causing DJ-1 and formation of high molecular weight complexes in human brain. Molecular and Cellular Neurosciences, 2004, 27, 236-246.	1.0	58
97	Assays for Amyloid Precursor Protein \hat{I}^3 -Secretase Activity. , 2004, , .		0
98	Presenilinâ€1 Exists in Both Pre―and Postâ€Golgi Compartments and Recycles Via COPlâ€Coated Membranes. Traffic, 2003, 4, 553-565.	1.3	48
99	Presenilin endoproteolysis mediated by an aspartyl protease activity pharmacologically distinct from γ-secretase. Journal of Neurochemistry, 2003, 85, 1563-1574.	2.1	43
100	Elevated β-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nature Medicine, 2003, 9, 3-4.	15.2	686
101	Functional γ-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and γ-secretase substrates. Neurobiology of Disease, 2003, 14, 194-204.	2.1	99
102	APP processing is regulated by cytoplasmic phosphorylation. Journal of Cell Biology, 2003, 163, 83-95.	2.3	393
103	Intramembrane proteolysis by presenilin and presenilin-like proteases. Journal of Cell Science, 2003, 116, 2839-2844.	1.2	81
104	Relationship between presenilinase and gamma-secretase. Drug News and Perspectives, 2003, 16, 69.	1.9	12
105	Amyloid inhibitors and Alzheimer's disease. Current Opinion in Investigational Drugs, 2003, 4, 55-9.	2.3	14
106	The Search for Î ³ -Secretase and Development of Inhibitors. Current Medicinal Chemistry, 2002, 9, 1087-1106.	1.2	44
107	Endoproteolysis of Presenilin in Vitro: Inhibition by γ-Secretase Inhibitorsâ€. Biochemistry, 2002, 41, 3372-3379.	1.2	36
108	Intracellular AÎ ² is increased by okadaic acid exposure in transfected neuronal and non-neuronal cell lines. Neurobiology of Aging, 2002, 23, 195-203.	1.5	31

#	Article	IF	CITATIONS
109	Aspartate Mutations in Presenilin and \hat{I}^3 -Secretase Inhibitors Both Impair Notch1 Proteolysis and Nuclear Translocation with Relative Preservation of Notch1 Signaling. Journal of Neurochemistry, 2002, 75, 583-593.	2.1	101
110	Amyloid-lowering isocoumarins are not direct inhibitors of Î ³ -secretase. Nature Cell Biology, 2002, 4, E110-E111.	4.6	37
111	Cell Biology of Amyloidogenesis: An overview. Advances in Behavioral Biology, 2002, , 1-6.	0.2	0
112	Subcellular localization of presenilin 2 endoproteolytic C-terminal fragments. Molecular Brain Research, 2001, 96, 14-20.	2.5	11
113	Amyloid metabolism and secretases in Alzheimer's disease. Current Neurology and Neuroscience Reports, 2001, 1, 422-427.	2.0	25
114	Role of presenilin in APP processing and $\hat{Al^2}$ production. , 2001, , 183-191.		0
115	Transition-state analogue inhibitors of Î ³ -secretase bind directly to presenilin-1. Nature Cell Biology, 2000, 2, 428-434.	4.6	531
116	Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid beta -protein generation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9299-9304.	3.3	140
117	The Transmembrane Aspartates in Presenilin 1 and 2 Are Obligatory for γ-Secretase Activity and Amyloid β-Protein Generation. Journal of Biological Chemistry, 2000, 275, 3173-3178.	1.6	226
118	FAD Mutations in Presenilin-1 or Amyloid Precursor Protein Decrease the Efficacy of a Î ³ -Secretase Inhibitor: Evidence for Direct Involvement of PS1 in the Î ³ -Secretase Cleavage Complex. Neurobiology of Disease, 2000, 7, 673-681.	2.1	56
119	Presenilin-Mediated Modulation of Capacitative Calcium Entry. Neuron, 2000, 27, 561-572.	3.8	309
120	Rapid Notch1 Nuclear Translocation after Ligand Binding Depends on Presenilinâ€associated γâ€5ecretase Activity. Annals of the New York Academy of Sciences, 2000, 920, 223-226.	1.8	29
121	Mutagenesis Identifies New Signals for β-Amyloid Precursor Protein Endocytosis, Turnover, and the Generation of Secreted Fragments, Including Aβ42. Journal of Biological Chemistry, 1999, 274, 18851-18856.	1.6	366
122	Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and Î ³ -secretase activity. Nature, 1999, 398, 513-517.	13.7	1,873
123	Peptidomimetic Probes and Molecular Modeling Suggest That Alzheimer's γ-Secretase Is an Intramembrane-Cleaving Aspartyl Proteaseâ€. Biochemistry, 1999, 38, 4720-4727.	1.2	319
124	Are Presenilins Intramembrane-Cleaving Proteases? Implications for the Molecular Mechanism of Alzheimer's Diseaseâ€. Biochemistry, 1999, 38, 11223-11230.	1.2	202
125	A detergent-insoluble membrance compartment contains AÎ ² in vivo. Nature Medicine, 1998, 4, 730-734.	15.2	410
126	A Substrate-Based Difluoro Ketone Selectively Inhibits Alzheimer's γ-Secretase Activity. Journal of Medicinal Chemistry, 1998, 41, 6-9.	2.9	219

#	Article	IF	CITATIONS
127	Presenilin 1 Regulates the Processing of β-Amyloid Precursor Protein C-Terminal Fragments and the Generation of Amyloid β-Protein in Endoplasmic Reticulum and Golgi. Biochemistry, 1998, 37, 16465-16471.	1.2	179
128	Additive Effects of PS1 and APP Mutations on Secretion of the 42-Residue Amyloid β-Protein. Neurobiology of Disease, 1998, 5, 107-116.	2.1	94
129	Subcellular Distribution and Turnover of Presenilins in Transfected Cells. Journal of Biological Chemistry, 1998, 273, 12436-12442.	1.6	136
130	Enhanced Production and Oligomerization of the 42-residue Amyloid β-Protein by Chinese Hamster Ovary Cells Stably Expressing Mutant Presenilins. Journal of Biological Chemistry, 1997, 272, 7977-7982.	1.6	269
131	Interaction between amyloid precursor protein and presenilins in mammalian cells: Implications for the pathogenesis of Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8208-8213.	3.3	254
132	Presenilin Proteins Undergo Heterogeneous Endoproteolysis between Thr291and Ala299and Occur as Stable N- and C-Terminal Fragments in Normal and Alzheimer Brain Tissue. Neurobiology of Disease, 1997, 3, 325-337.	2.1	304
133	Skeletal and CNS Defects in Presenilin-1-Deficient Mice. Cell, 1997, 89, 629-639.	13.5	937
134	Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Medicine, 1997, 3, 67-72.	15.2	1,271
135	In vivo evidence for the involvement of anionic phospholipids in initiation of DNA replication in Escherichia coli Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 783-787.	3.3	137
136	Identity of the Escherichia coli cls and nov genes. Journal of Bacteriology, 1995, 177, 5155-5157.	1.0	30
137	Phosphatidylinositol cannot substitute for phosphatidylglycerol in supporting cell growth of Escherichia coli. Journal of Bacteriology, 1995, 177, 2926-2928.	1.0	37

138 Toward the Identification of \hat{I}^3 -Secretase: Using Transition State Analog Inhibitors. , 0, , 777-788.

0