Alicia Cordero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the effect of the multidimensional weight functions on the stability of iterative processes. Journal of Computational and Applied Mathematics, 2022, 405, 113052.	2.0	5
2	Isonormal surfaces: A new tool for the multidimensional dynamical analysis of iterative methods for solving nonlinear systems. Mathematical Methods in the Applied Sciences, 2022, 45, 3360-3375.	2.3	2
3	A new higher-order optimal derivative free scheme for multiple roots. Journal of Computational and Applied Mathematics, 2022, 404, 113773.	2.0	9
4	An optimal and low computational cost fractional Newton-type method for solving nonlinear equations. Applied Mathematics Letters, 2022, 124, 107650.	2.7	22
5	Iterative processes with fractional derivatives. , 2022, , 119-150.		0
6	Dynamical analysis of an iterative method with memory on a family of third-degree polynomials. AIMS Mathematics, 2022, 7, 6445-6466.	1.6	2
7	Symmetry in the Multidimensional Dynamical Analysis of Iterative Methods with Memory. Symmetry, 2022, 14, 442.	2.2	0
8	Derivative-Free Iterative Schemes for Multiple Roots of Nonlinear Functions. Mathematics, 2022, 10, 1530.	2.2	2
9	A Game for Learning How to Model in Graph Theory. Mathematics, 2022, 10, 1969.	2.2	Ο
10	Iterative schemes for finding all roots simultaneously of nonlinear equations. Applied Mathematics Letters, 2022, 134, 108325.	2.7	8
11	New fourth- and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis. Numerical Algorithms, 2021, 87, 1017-1060.	1.9	13
12	Convergence and Stability of a Parametric Class of Iterative Schemes for Solving Nonlinear Systems. Mathematics, 2021, 9, 86.	2.2	16
13	Chaos and Stability in a New Iterative Family for Solving Nonlinear Equations. Algorithms, 2021, 14, 101.	2.1	13
14	A General Optimal Iterative Scheme with Arbitrary Order of Convergence. Symmetry, 2021, 13, 884.	2.2	7
15	Semilocal Convergence of the Extension of Chun's Method. Axioms, 2021, 10, 161.	1.9	2
16	Design, Convergence and Stability of a Fourth-Order Class of Iterative Methods for Solving Nonlinear Vectorial Problems. Fractal and Fractional, 2021, 5, 125.	3.3	3
17	A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems. Mathematics, 2021, 9, 2122.	2.2	0
18	Memorizing Schröder's Method as an Efficient Strategy for Estimating Roots of Unknown Multiplicity. Mathematics, 2021, 9, 2570.	2.2	7

#	Article	IF	CITATIONS
19	Vectorial Iterative Schemes with Memory for Solving Nonlinear Systems of Equations. , 2021, 2, .		0
20	A family of optimal fourthâ€order methods for multiple roots of nonlinear equations. Mathematical Methods in the Applied Sciences, 2020, 43, 7869-7884.	2.3	9
21	Anomalies in the convergence of Traubâ€ŧype methods with memory. Computational and Mathematical Methods, 2020, 2, e1060.	0.8	0
22	On the choice of the best members of the Kim family and the improvement of its convergence. Mathematical Methods in the Applied Sciences, 2020, 43, 8051-8066.	2.3	14
23	Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences, 2020, 43, 1349-1358.	2.3	28
24	CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems. Journal of Mathematical Chemistry, 2020, 58, 555-572.	1.5	3
25	Memory in a New Variant of King's Family for Solving Nonlinear Systems. Mathematics, 2020, 8, 1251.	2.2	4
26	Generalized Inverses Estimations by Means of Iterative Methods with Memory. Mathematics, 2020, 8, 2.	2.2	12
27	Multipoint Fractional Iterative Methods with (2α + 1)th-Order of Convergence for Solving Nonlinear Problems. Mathematics, 2020, 8, 452.	2.2	20
28	High order family of multivariate iterative methods: Convergence and stability. Journal of Computational and Applied Mathematics, 2020, 405, 113053.	2.0	4
29	Impact on Stability by the Use of Memory in Traub-Type Schemes. Mathematics, 2020, 8, 274.	2.2	7
30	Some variants of Halley's method with memory and their applications for solving several chemical problems. Journal of Mathematical Chemistry, 2020, 58, 751-774.	1.5	9
31	On the improvement of the order of convergence of iterative methods for solving nonlinear systems by means of memory. Applied Mathematics Letters, 2020, 104, 106277.	2.7	12
32	Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, 114, 1.	1.2	3
33	A stable class of modified Newton-like methods for multiple roots and their dynamics. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21, 603-621.	1.0	7
34	A fast algorithm to solve systems of nonlinear equations. Journal of Computational and Applied Mathematics, 2019, 354, 242-258.	2.0	21
35	Fixed Point Root-Finding Methods of Fourth-Order of Convergence. Symmetry, 2019, 11, 769.	2.2	6
36	A fractional Newton method with <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e1422" altimg="si1.svg"><mml:mn>2</mml:mn><mml:mi>α</mml:mi></mml:math> th-order of convergence and its stability. Applied Mathematics Letters, 2019, 98, 344-351.	2.7	51

#	Article	IF	CITATIONS
37	A New Class of Iterative Processes for Solving Nonlinear Systems by Using One Divided Differences Operator. Mathematics, 2019, 7, 776.	2.2	7
38	A Variant of Chebyshev's Method with 3αth-Order of Convergence by Using Fractional Derivatives. Symmetry, 2019, 11, 1017.	2.2	13
39	A Convex Combination Approach for Mean-Based Variants of Newton's Method. Symmetry, 2019, 11, 1106.	2.2	4
40	Approximating the inverse and the Mooreâ€Penrose inverse of complex matrices. Mathematical Methods in the Applied Sciences, 2019, 42, 5920-5928.	2.3	2
41	An Efficient Iterative Method Based on Two-Stage Splitting Methods to Solve Weakly Nonlinear Systems. Mathematics, 2019, 7, 815.	2.2	1
42	A new efficient parametric family of iterative methods for solving nonlinear systems. Journal of Difference Equations and Applications, 2019, 25, 1454-1467.	1.1	4
43	Modified Potra-Pták Multi-step Schemes with Accelerated Order of Convergence for Solving Systems of Nonlinear Equations. Mathematical and Computational Applications, 2019, 24, 3.	1.3	0
44	Efficiency and Stability of a Family of Iterative Schemes for Solving Nonlinear Equations. Lecture Notes in Computer Science, 2019, , 185-192.	1.3	0
45	Stability of a Family of Iterative Methods of Fourth-Order. Lecture Notes in Computer Science, 2019, , 193-200.	1.3	0
46	Multidimensional Real Dynamics for High-Order Processes. Lecture Notes in Computer Science, 2019, , 201-207.	1.3	0
47	Bi-parametric Family of Methods with Memory Based of Ostrowski-Chun Method. Lecture Notes in Computer Science, 2019, , 208-215.	1.3	1
48	A Family of Optimal Eighth Order Multiple Root Finders with Multivariate Weight Function. Lecture Notes in Computer Science, 2019, , 663-669.	1.3	0
49	Generating Root-Finder Iterative Methods of Second Order: Convergence and Stability. Axioms, 2019, 8, 55.	1.9	12
50	Stability Anomalies of Some Jacobian-Free Iterative Methods of High Order of Convergence. Axioms, 2019, 8, 51.	1.9	0
51	A class of four parametric with―and withoutâ€memory root finding methods. Computational and Mathematical Methods, 2019, 1, e1024.	0.8	5
52	Wide stability in a new family of optimal fourthâ€order iterative methods. Computational and Mathematical Methods, 2019, 1, e1023.	0.8	14
53	A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics. Applied Mathematics and Computation, 2019, 357, 147-166.	2.2	8
54	A New Three-Step Class of Iterative Methods for Solving Nonlinear Systems. Mathematics, 2019, 7, 1221.	2.2	6

#	Article	IF	CITATIONS
55	Iterative Methods with Memory for Solving Systems of Nonlinear Equations Using a Second Order Approximation. Mathematics, 2019, 7, 1069.	2.2	12
56	Generalized High-Order Classes for Solving Nonlinear Systems and Their Applications. Mathematics, 2019, 7, 1194.	2.2	3
57	Stability Analysis of Jacobian-Free Newton's Iterative Method. Algorithms, 2019, 12, 236.	2.1	1
58	Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems. Applied Numerical Mathematics, 2019, 137, 1-18.	2.1	4
59	A general class of four parametric with- and without memory iterative methods for nonlinear equations. Journal of Mathematical Chemistry, 2019, 57, 1448-1471.	1.5	Ο
60	Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences. Journal of Mathematical Chemistry, 2019, 57, 1344-1373.	1.5	3
61	Stability and applicability of iterative methods with memory. Journal of Mathematical Chemistry, 2019, 57, 1282-1300.	1.5	17
62	Stability analysis of a family of optimal fourth-order methods for multiple roots. Numerical Algorithms, 2019, 81, 947-981.	1.9	14
63	Dynamics of iterative families with memory based on weight functions procedure. Journal of Computational and Applied Mathematics, 2019, 354, 286-298.	2.0	15
64	Stability analysis of fourth-order iterative method for finding multiple roots of non-linear equations. Applied Mathematics and Nonlinear Sciences, 2019, 4, 43-56.	1.6	50
65	DYNAMICAL ANALYSIS TO EXPLAIN THE NUMERICAL ANOMALIES IN THE FAMILY OF ERMAKOV-KALITLIN TYPE METHODS. Mathematical Modelling and Analysis, 2019, 24, 335-350.	1.5	1
66	Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 2018, 337, 87-97.	2.0	18
67	Dynamical analysis on cubic polynomials of Damped Traub's method for approximating multiple roots. Applied Mathematics and Computation, 2018, 328, 82-99.	2.2	3
68	Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Applied Mathematics and Computation, 2018, 323, 43-57.	2.2	9
69	Choosing the most stable members of Kou's family of iterative methods. Journal of Computational and Applied Mathematics, 2018, 330, 759-769. Highly efficient iterative algorithms for solving nonlinear systems with arbitrary order of	2.0	13
70	convergence <mml:math <br="" altimg="si49.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" overflow="scroll"><mml:mi>p</mml:mi><mml:mo>+</mml:mo><mml:mn>3</mml:mn></mml:math> , <mml:math <="" altimg="si50.gif" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.0</td><td>7</td></mml:math>	2.0	7
71	overflow="scroll"> <mml:mi>p</mml:mi> cmml:mo>≥ <mml:mn>5</mml:mn> . Jour An eighth-order family of optimal multiple root finders and its dynamics. Numerical Algorithms, 2018, 77, 1249-1272.	1.9	27
72	Multiplicity anomalies of an optimal fourth-order class of iterative methods for solving nonlinear equations. Nonlinear Dynamics, 2018, 91, 81-112.	5.2	8

#	Article	IF	CITATIONS
73	Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. Journal of Mathematical Chemistry, 2018, 56, 1884-1901.	1.5	24
74	CMMSE2017: On two classes of fourth- and seventh-order vectorial methods with stable behavior. Journal of Mathematical Chemistry, 2018, 56, 1902-1923.	1.5	1
75	Stability of different families of iterative methods with memory. AIP Conference Proceedings, 2018, , .	0.4	0
76	New Iterative Methods for Solving Nonlinear Problems with One and Several Unknowns. Mathematics, 2018, 6, 296.	2.2	4
77	An Efficient Family of Optimal Eighth-Order Multiple Root Finders. Mathematics, 2018, 6, 310.	2.2	13
78	Corrigendum to "Dynamical Techniques for Analyzing Iterative Schemes with Memory― Complexity, 2018, 2018, 1-1.	1.6	0
79	Efficient Four-Parametric with-and-without-Memory Iterative Methods Possessing High Efficiency Indices. Mathematical Problems in Engineering, 2018, 2018, 1-12.	1.1	9
80	High-order extension of an efficient iterative method for solving nonlinear problems. AIP Conference Proceedings, 2018, , .	0.4	0
81	Preface of the "lterative Procedures for Solving Nonlinear Problemsâ€: AIP Conference Proceedings, 2018, , .	0.4	0
82	Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics. Journal of Computational and Applied Mathematics, 2018, 342, 352-374.	2.0	9
83	Dynamical Techniques for Analyzing Iterative Schemes with Memory. Complexity, 2018, 2018, 1-13.	1.6	3
84	Stability of a fourth order bi-parametric family of iterative methods. Journal of Computational and Applied Mathematics, 2017, 312, 94-102.	2.0	5
85	A sixth-order iterative method for approximating the polar decomposition of an arbitrary matrix. Journal of Computational and Applied Mathematics, 2017, 318, 591-598.	2.0	2
86	Third-degree anomalies of Traub's method. Journal of Computational and Applied Mathematics, 2017, 309, 511-521.	2.0	7
87	Stability of King's family of iterative methods with memory. Journal of Computational and Applied Mathematics, 2017, 318, 504-514.	2.0	25
88	On the convergence of a higher order family of methods and its dynamics. Journal of Computational and Applied Mathematics, 2017, 309, 542-562.	2.0	9
89	Multidimensional stability analysis of a family of biparametric iterative methods: CMMSE2016. Journal of Mathematical Chemistry, 2017, 55, 1461-1480.	1.5	6
90	A family of parametric schemes of arbitrary even order for solving nonlinear models: CMMSE2016. Journal of Mathematical Chemistry, 2017, 55, 1443-1460.	1.5	0

#	Article	IF	CITATIONS
91	Stable high-order iterative methods for solving nonlinear models. Applied Mathematics and Computation, 2017, 303, 70-88.	2.2	18
92	Numerically stable improved Chebyshev–Halley type schemes for matrix sign function. Journal of Computational and Applied Mathematics, 2017, 318, 189-198.	2.0	23
93	Design and multidimensional extension of iterative methods for solving nonlinear problems. Applied Mathematics and Computation, 2017, 293, 194-203.	2.2	8
94	A dynamical comparison between iterative methods with memory: Are the derivatives good for the memory?. Journal of Computational and Applied Mathematics, 2017, 318, 335-347.	2.0	1
95	Widening basins of attraction of optimal iterative methods. Nonlinear Dynamics, 2017, 87, 913-938.	5.2	8
96	A family of Kurchatov-type methods and its stability. Applied Mathematics and Computation, 2017, 294, 264-279.	2.2	8
97	Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 2017, 1-11.	1.6	27
98	King-Type Derivative-Free Iterative Families: Real and Memory Dynamics. Complexity, 2017, 2017, 1-15.	1.6	10
99	Iterative Methods and Dynamics for Nonlinear Problems. Discrete Dynamics in Nature and Society, 2017, 2017, 1-1.	0.9	0
100	Multistep High-Order Methods for Nonlinear Equations Using Padé-Like Approximants. Discrete Dynamics in Nature and Society, 2017, 2017, 1-6.	0.9	0
101	Study of iterative methods through the Cayley Quadratic Test. Journal of Computational and Applied Mathematics, 2016, 291, 358-369.	2.0	20
102	Some new bi-accelerator two-point methods for solving nonlinear equations. Computational and Applied Mathematics, 2016, 35, 251-267.	1.3	7
103	Real and Complex Dynamics of Iterative Methods. Discrete Dynamics in Nature and Society, 2016, 2016, 1-2.	0.9	0
104	Dynamics of a multipoint variant of Chebyshev–Halley's family. Applied Mathematics and Computation, 2016, 284, 195-208.	2.2	0
105	Stability analysis of a parametric family of iterative methods for solving nonlinear models. Applied Mathematics and Computation, 2016, 285, 26-40.	2.2	30
106	On the Design of Optimal Iterative Methods for Solving Nonlinear Equations. SEMA SIMAI Springer Series, 2016, , 79-111.	0.7	2
107	New efficient methods for solving nonlinear systems of equations with arbitrary even order. Applied Mathematics and Computation, 2016, 287-288, 94-103.	2.2	14
108	Chaos and convergence of a family generalizing Homeier's method with damping parameters. Nonlinear Dynamics, 2016, 85, 1939-1954.	5.2	2

#	Article	IF	CITATIONS
109	Stability study of eighth-order iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2016, 291, 348-357.	2.0	28
110	Orbits of period two in the family of a multipoint variant of Chebyshev-Halley family. Numerical Algorithms, 2016, 73, 141-156.	1.9	8
111	A stable class of improved second-derivative free Chebyshev-Halley type methods with optimal eighth order convergence. Numerical Algorithms, 2016, 72, 937-958.	1.9	8
112	Damped Traub's method: Convergence and stability. Mathematics and Computers in Simulation, 2016, 119, 57-68.	4.4	4
113	An optimal fourth-order family of methods for multiple roots and its dynamics. Numerical Algorithms, 2016, 71, 775-796.	1.9	48
114	Numerical Solution of Turbulence Problems by Solving Burgers' Equation. Algorithms, 2015, 8, 224-233.	2.1	10
115	Dynamics and Fractal Dimension of Steffensen-Type Methods. Algorithms, 2015, 8, 271-279.	2.1	12
116	Design of High-Order Iterative Methods for Nonlinear Systems by Using Weight Function Procedure. Abstract and Applied Analysis, 2015, 2015, 1-12.	0.7	8
117	Dynamics of the family of c-iterative methods. International Journal of Computer Mathematics, 2015, 92, 1815-1825.	1.8	10
118	On the convergence of a damped Newton-like method with modified right hand side vector. Applied Mathematics and Computation, 2015, 266, 927-936.	2.2	7
119	New family of iterative methods based on the Ermakov–Kalitkin scheme for solving nonlinear systems of equations. Computational Mathematics and Mathematical Physics, 2015, 55, 1947-1959.	0.8	6
120	A new family of iterative methods widening areas of convergence. Applied Mathematics and Computation, 2015, 252, 405-417.	2.2	12
121	A stable family with high order of convergence for solving nonlinear equations. Applied Mathematics and Computation, 2015, 254, 240-251.	2.2	11
122	Behaviour of fixed and critical points of the \$\$left(alpha ,cight) \$\$ \hat{I}_{\pm} , c -family of iterative methods. Journal of Mathematical Chemistry, 2015, 53, 807-827.	1.5	0
123	Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure. Applied Mathematics and Computation, 2015, 268, 1064-1071.	2.2	19
124	On developing fourth-order optimal families of methods for multiple roots and their dynamics. Applied Mathematics and Computation, 2015, 265, 520-532.	2.2	48
125	On the convergence of a Damped Secant method with modified right-hand side vector. Applied Mathematics and Computation, 2015, 252, 315-323.	2.2	3
126	Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem. SeMA Journal, 2015, 70, 1-10.	2.0	0

#	Article	IF	CITATIONS
127	A new fourth-order family for solving nonlinear problems and its dynamics. Journal of Mathematical Chemistry, 2015, 53, 893-910.	1.5	25
128	Two weighted eight-order classes of iterative root-finding methods. International Journal of Computer Mathematics, 2015, 92, 1790-1805.	1.8	13
129	A multidimensional dynamical approach to iterative methods with memory. Applied Mathematics and Computation, 2015, 271, 701-715.	2.2	21
130	Construction of fourth-order optimal families of iterative methods and their dynamics. Applied Mathematics and Computation, 2015, 271, 89-101.	2.2	13
131	Some new efficient multipoint iterative methods for solving nonlinear systems of equations. International Journal of Computer Mathematics, 2015, 92, 1921-1934.	1.8	43
132	On the local convergence of a fifth-order iterative method in Banach spaces. Applied Mathematics and Computation, 2015, 251, 396-403.	2.2	36
133	Low-complexity root-finding iteration functions with no derivatives of any order of convergence. Journal of Computational and Applied Mathematics, 2015, 275, 502-515.	2.0	25
134	An efficient two-parametric family with memory for nonlinear equations. Numerical Algorithms, 2015, 68, 323-335.	1.9	32
135	Solving nonlinear problems by Ostrowski–Chun type parametric families. Journal of Mathematical Chemistry, 2015, 53, 430-449.	1.5	22
136	Semilocal convergence by using recurrence relations for a fifth-order method in Banach spaces. Journal of Computational and Applied Mathematics, 2015, 273, 205-213.	2.0	24
137	One-point Newton-type iterative methods: A unified point of view. Journal of Computational and Applied Mathematics, 2015, 275, 366-374.	2.0	10
138	Towards a Better Learning Models Through OCWs and MOOCs. International Journal of Interactive Multimedia and Artificial Intelligence, 2015, 3, 26.	1.3	8
139	Study of a Biparametric Family of Iterative Methods. Abstract and Applied Analysis, 2014, 2014, 1-12.	0.7	5
140	Iterative Fixed-Point Methods for Solving Nonlinear Problems: Dynamics and Applications. Abstract and Applied Analysis, 2014, 2014, 1-2.	0.7	0
141	On Generalization Based on Bi et al. Iterative Methods with Eighth-Order Convergence for Solving Nonlinear Equations. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	2
142	Modifications of Newton's method to extend the convergence domain. SeMA Journal, 2014, 66, 43-53.	2.0	4
143	Optimal High-Order Methods for Solving Nonlinear Equations. Journal of Applied Mathematics, 2014, 2014, 1-9.	0.9	8
144	Basins of Attraction for Various Steffensen-Type Methods. Journal of Applied Mathematics, 2014, 2014, 1-17.	0.9	22

#	Article	IF	CITATIONS
145	Iterative Methods for Nonlinear Equations or Systems and Their Applications 2014. Journal of Applied Mathematics, 2014, 2014, 1-2.	0.9	4
146	On improved three-step schemes with high efficiency index and their dynamics. Numerical Algorithms, 2014, 65, 153-169.	1.9	26
147	On the extension of Householder's method for weighted Moore–Penrose inverse. Applied Mathematics and Computation, 2014, 231, 407-413.	2.2	4
148	Accelerated iterative methods for finding solutions of nonlinear equations and their dynamical behavior. Calcolo, 2014, 51, 17-30.	1.1	19
149	Two Optimal General Classes of Iterative Methods with Eighth-Order. Acta Applicandae Mathematicae, 2014, 134, 61-74.	1.0	16
150	Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?. Applied Mathematics and Computation, 2014, 244, 398-412.	2.2	30
151	A class of optimal eighth-order derivative-free methods for solving the Danchick–Gauss problem. Applied Mathematics and Computation, 2014, 232, 237-246.	2.2	18
152	Real qualitative behavior of a fourth-order family of iterative methods by using the convergence plane. Mathematics and Computers in Simulation, 2014, 105, 49-61.	4.4	26
153	Dynamics of a family of Chebyshev–Halley type methods. Applied Mathematics and Computation, 2013, 219, 8568-8583.	2.2	82
154	Period-doubling bifurcations in the family of Chebyshev–Halley-type methods. International Journal of Computer Mathematics, 2013, 90, 2061-2071.	1.8	7
155	Derivative-free high-order methods applied to preliminary orbit determination. Mathematical and Computer Modelling, 2013, 57, 1795-1799.	2.0	1
156	Increasing the order of convergence of iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 2013, 252, 86-94.	2.0	30
157	Complex dynamics of derivative-free methods for nonlinear equations. Applied Mathematics and Computation, 2013, 219, 7023-7035.	2.2	90
158	A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2013, 252, 95-102.	2.0	34
159	Generating optimal derivative free iterative methods for nonlinear equations by using polynomial interpolation. Mathematical and Computer Modelling, 2013, 57, 1950-1956.	2.0	26
160	Chaos in King's iterative family. Applied Mathematics Letters, 2013, 26, 842-848.	2.7	118
161	Local convergence and dynamical analysis of a new family of optimal fourth-order iterative methods. International Journal of Computer Mathematics, 2013, 90, 2049-2060.	1.8	16
162	Fourth- and Fifth-Order Methods for Solving Nonlinear Systems of Equations: An Application to the Global Positioning System. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	20

#	Article	IF	CITATIONS
163	Iterative Methods for Nonlinear Equations or Systems and Their Applications. Journal of Applied Mathematics, 2013, 2013, 1-2.	0.9	6
164	Bulbs of Period Two in the Family of Chebyshev-Halley Iterative Methods on Quadratic Polynomials. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	5
165	Preliminary Orbit Determination of Artificial Satellites: A Vectorial Sixth-Order Approach. Abstract and Applied Analysis, 2013, 2013, 1-10.	0.7	5
166	Drawing Dynamical and Parameters Planes of Iterative Families and Methods. Scientific World Journal, The, 2013, 2013, 1-11.	2.1	135
167	New Family of Iterative Methods with High Order of Convergence for Solving Nonlinear Systems. Lecture Notes in Computer Science, 2013, , 222-230.	1.3	0
168	A Family of Derivative-Free Methods with High Order of Convergence and Its Application to Nonsmooth Equations. Abstract and Applied Analysis, 2012, 2012, 1-15.	0.7	6
169	Study of the dynamics of third-order iterative methods on quadratic polynomials. International Journal of Computer Mathematics, 2012, 89, 1826-1836.	1.8	9
170	A Family of Iterative Methods with Accelerated Eighth-Order Convergence. Journal of Applied Mathematics, 2012, 2012, 1-9.	0.9	1
171	On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 2012, 1-12.	0.9	26
172	Artificial satellites preliminary orbit determination by the modified high-order Gauss method. International Journal of Computer Mathematics, 2012, 89, 347-356.	1.8	4
173	New Predictor-Corrector Methods with High Efficiency for Solving Nonlinear Systems. Journal of Applied Mathematics, 2012, 2012, 1-15.	0.9	1
174	Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 2012, 218, 11496-11504.	2.2	28
175	Increasing the convergence order of an iterative method for nonlinear systems. Applied Mathematics Letters, 2012, 25, 2369-2374.	2.7	94
176	Steffensen type methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2012, 236, 3058-3064.	2.0	48
177	Preface of the $\hat{a} \in \hat{c}$ Advances in Numerical Methods for Solving Nonlinear Equations and Systems $\hat{a} \in \hat{c}$, 2011, , .		0
178	Optimal Derivative-Free Methods for Solving Nonlinear Equations. , 2011, , .		0
179	Accelerated Steffensen-Type Methods for Solving Nonlinear Systems of Equations. , 2011, , .		0
180	Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 2011, 217, 4548-4556.	2.2	30

#	Article	IF	CITATIONS
181	A class of Steffensen type methods with optimal order of convergence. Applied Mathematics and Computation, 2011, 217, 7653-7659.	2.2	45
182	Three-step iterative methods with optimal eighth-order convergence. Journal of Computational and Applied Mathematics, 2011, 235, 3189-3194.	2.0	67
183	A family of modified Ostrowski's methods with optimal eighth order of convergence. Applied Mathematics Letters, 2011, 24, 2082-2086.	2.7	24
184	Approximation of artificial satellites' preliminary orbits: The efficiency challenge. Mathematical and Computer Modelling, 2011, 54, 1802-1807.	2.0	35
185	On interpolation variants of Newton's method for functions of several variables. Journal of Computational and Applied Mathematics, 2010, 234, 34-43.	2.0	22
186	Efficient three-step iterative methods with sixth order convergence for nonlinear equations. Numerical Algorithms, 2010, 53, 485-495.	1.9	15
187	A modified Newton-Jarratt's composition. Numerical Algorithms, 2010, 55, 87-99.	1.9	186
188	Iterative methods for use with nonlinear discrete algebraic models. Mathematical and Computer Modelling, 2010, 52, 1251-1257.	2.0	13
189	A family of iterative methods with sixth and seventh order convergence for nonlinear equations. Mathematical and Computer Modelling, 2010, 52, 1490-1496.	2.0	22
190	Accelerated methods of order <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si12.gif" display="inline" overflow="scroll"><mml:mn>2</mml:mn><mml:mi>p</mml:mi></mml:math> for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 2010, 233, 2696-2702.	2.0	9
191	New modifications of Potra–Pták's method with optimal fourth and eighth orders of convergence. Journal of Computational and Applied Mathematics, 2010, 234, 2969-2976.	2.0	65
192	Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 2009, 231, 541-551.	2.0	72
193	A class of multi-point iterative methods for nonlinear equations. Applied Mathematics and Computation, 2008, 197, 337-344.	2.2	6
194	Bott integrable Hamiltonian systems on \$S^{2}imes S^{1}\$. Discrete and Continuous Dynamical Systems, 2008, 22, 587-604.	0.9	0
195	Round-handle decomposition of S2×S1. Dynamical Systems, 2007, 22, 179-202.	0.4	2
196	Variants of Newton's Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 2007, 190, 686-698.	2.2	324
197	Variants of Newton's method for functions of several variables. Applied Mathematics and Computation, 2006, 183, 199-208.	2.2	84
198	NMS Flows on Three-Dimensional Manifolds with One Saddle Periodic Orbit. Acta Mathematica Sinica, English Series, 2004, 20, 47-56.	0.6	8

#	Article	IF	CITATIONS
199	Topology of the Two Fixed Centers Problem. Celestial Mechanics and Dynamical Astronomy, 2002, 82, 203-223.	1.4	5
200	Orbital Structure of the Two Fixed Centres Problem. International Astronomical Union Colloquium, 1999, 172, 463-464.	0.1	0
201	Design, Analysis, and Applications of Iterative Methods for Solving Nonlinear Systems. , 0, , .		2