
Theodosia Stratoudaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remote Ultrasonic Imaging of a Wire Arc Additive Manufactured Ti-6AI-4V Component using Laser Induced Phased Array. , 2021, , .		4
2	Laser Induced Phased Arrays (LIPA) to detect nested features in additively manufactured components. Materials and Design, 2020, 187, 108412.	7.0	42
3	Full matrix capture and the total focusing imaging algorithm using laser induced ultrasonic phased arrays. AIP Conference Proceedings, 2017, , .	0.4	12
4	Laser induced ultrasonic phased array using full matrix capture data acquisition and total focusing method. Optics Express, 2016, 24, 21921.	3.4	57
5	Fabrication of Cheap Optical Transducers (CHOTs) on film carriers for in-situ application and generation of surface acoustic waves. Journal of Physics: Conference Series, 2015, 581, 012010.	0.4	0
6	Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: An alternative to static strain. Journal of the Acoustical Society of America, 2014, 135, 1064-1070.	1.1	13
7	Optical MEMs transducers with enhanced efficiency and sensitivity. Journal of Physics: Conference Series, 2012, 353, 012002.	0.4	1
8	CHeap Optical Transducers (CHOTs) for generation and detection of longitudinal waves. , 2012, , .		2
9	A laser-activated MEMS transducer for efficient generation of narrowband longitudinal ultrasonic waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58, 470-476.	3.0	1
10	CHOTs optical transducers. Nondestructive Testing and Evaluation, 2011, 26, 353-366.	2.1	4
11	Measurement of material nonlinearity using surface acoustic wave parametric interaction and laser ultrasonics. Journal of the Acoustical Society of America, 2011, 129, 1721-1728.	1.1	36
12	Study of a high efficiency optical MEMS transducer for the generation of narrowband laser ultrasound. Journal of Physics: Conference Series, 2010, 214, 012103.	0.4	1
13	LASER ULTRASONICS FOR DETECTION OF ELASTIC NONLINEARITY USING COLLINEAR MIXING OF SURFACE ACOUSTIC WAVES. , 2010, , .		2
14	Evanescent CHOTs for the optical generation and detection of ultrahigh frequency SAWs. , 2009, , .		3
15	Design and experimental study of microcantilever ultrasonic detection transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, 56, 2722-2732.	3.0	4
16	Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves. Ultrasonics, 2008, 48, 471-477.	3.9	12
17	Cheap optical transducers (CHOTs) for narrowband ultrasonic applications. Measurement Science and Technology, 2007, 18, 843-851.	2.6	24
18	Yellowing effect and discoloration of pigments: experimental and theoretical studies. Journal of Cultural Heritage, 2003, 4, 249-256.	3.3	71

#	Article	IF	CITATIONS
19	The effect of laser wavelength on the efficiency of laser-generated ultrasound for the inspection of CFRCs. Insight: Non-Destructive Testing and Condition Monitoring, 2003, 45, 186-189.	0.6	0
20	The role of epoxy resin in the mechanism of laser-generated ultrasound in carbon-fiber-reinforced composites. , 2003, , .		4
21	Laser-based ultrasound measurements of optical absorption depth in epoxy resins. , 2002, , .		2
22	Discoloration of Pigments Induced by Laser Irradiation. Surface Engineering, 2001, 17, 249-253.	2.2	24
23	Laser generated ultrasound: efficiency and damage thresholds in carbon fibre reinforced composites. IET Science, Measurement and Technology, 2001, 148, 139-142.	0.7	4
24	<title>Noncontact ultrasound studies of composite materials: new developments</title> . , 2000, 3993, 268.		1
25	Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy. Journal of Molecular Structure, 2000, 550-551, 191-198.	3.6	68
26	LIBS-spectroscopy for monitoring and control of the laser cleaning process of stone and medieval glass. Journal of Cultural Heritage, 2000, 1, S287-S292.	3.3	42
27	Comparative study of different wavelengths from IR to UV applied to clean sandstone. Applied Surface Science, 2000, 157, 1-6.	6.1	41
28	Laser-induced breakdown spectroscopy and Raman microscopy for analysis of pigments in polychromes. Journal of Cultural Heritage, 2000, 1, S297-S302.	3.3	22
29	Pigment Identification in Painted Artworks: A Dual Analytical Approach Employing Laser-Induced Breakdown Spectroscopy and Raman Microscopy. Applied Spectroscopy, 2000, 54, 463-469.	2.2	114
30	Cleaning of Ceramics Using Lasers of Different Wavelength. , 2000, , 213-217.		1
31	Laser-induced breakdown spectroscopy for on-line control of laser cleaning of sandstone and stained glass. Applied Physics A: Materials Science and Processing, 1999, 69, 441-444.	2.3	84