
EgÃ-dio Torrado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impairment of immunity to <i>Candida</i> and <i>Mycobacterium</i> in humans with bi-allelic <i>RORC</i> mutations. Science, 2015, 349, 606-613.	12.6	366
2	IL-17 and Th17 cells in tuberculosis. Cytokine and Growth Factor Reviews, 2010, 21, 455-462.	7.2	254
3	Cutting Edge: IFN- \hat{I}^3 Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. Journal of Immunology, 2006, 177, 1416-1420.	0.8	249
4	Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with <i>Mycobacterium tuberculosis</i> . Journal of Experimental Medicine, 2010, 207, 1609-1616.	8.5	230
5	First Cultivation and Characterization of Mycobacterium ulcerans from the Environment. PLoS Neglected Tropical Diseases, 2008, 2, e178.	3.0	175
6	Infection with Mycobacterium ulcerans Induces Persistent Inflammatory Responses in Mice. Infection and Immunity, 2005, 73, 6299-6310.	2.2	92
7	Evidence for an Intramacrophage Growth Phase of Mycobacterium ulcerans. Infection and Immunity, 2007, 75, 977-987.	2.2	91
8	Mycolactone-Mediated Inhibition of Tumor Necrosis Factor Production by Macrophages Infected with Mycobacterium ulcerans Has Implications for the Control of Infection. Infection and Immunity, 2007, 75, 3979-3988.	2.2	88
9	Type I IFN Inhibits Alternative Macrophage Activation during <i>Mycobacterium tuberculosis</i> Infection and Leads to Enhanced Protection in the Absence of IFN-13 Signaling. Journal of Immunology, 2016, 197, 4714-4726.	0.8	87
10	Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology, 2004, 111, 334-342.	4.4	69
11	Cellular response to mycobacteria: balancing protection and pathology. Trends in Immunology, 2011, 32, 66-72.	6.8	69
12	Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nature Communications, 2020, 11, 2282.	12.8	68
13	Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during <i>Mycobacterium tuberculosis</i> infection. Journal of Experimental Medicine, 2015, 212, 1449-1463.	8.5	66
14	Lymphotoxin beta receptor signaling limits mucosal damage through driving IL-23 production by epithelial cells. Mucosal Immunology, 2015, 8, 403-413.	6.0	61
15	Cytokines in the Balance of Protection and Pathology During Mycobacterial Infections. Advances in Experimental Medicine and Biology, 2013, 783, 121-140.	1.6	55
16	IFN-γ–Dependent Activation of Macrophages during Experimental Infections by <i>Mycobacterium ulcerans</i> Is Impaired by the Toxin Mycolactone. Journal of Immunology, 2010, 184, 947-955.	0.8	50
17	Dextrin nanoparticles: Studies on the interaction with murine macrophages and blood clearance. Colloids and Surfaces B: Biointerfaces, 2010, 75, 483-489.	5.0	47
18	Antibacterial bioadhesive layer-by-layer coatings for orthopedic applications. Journal of Materials Chemistry B, 2016, 4, 5385-5393.	5.8	46

EGÃĐIO TORRADO

#	Article	IF	CITATIONS
19	Differential and Site Specific Impact of B Cells in the Protective Immune Response to Mycobacterium tuberculosis in the Mouse. PLoS ONE, 2013, 8, e61681.	2.5	45
20	BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4+IL-17+TNF+IL-2+ T cells. Vaccine, 2015, 33, 85-91.	3.8	42
21	<i>Mycobacterium ulcerans</i> Triggers T-Cell Immunity followed by Local and Regional but Not Systemic Immunosuppression. Infection and Immunity, 2011, 79, 421-430.	2.2	41
22	Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications. Materials Science and Engineering C, 2019, 94, 161-168.	7.3	38
23	Cellular Immunity Confers Transient Protection in Experimental Buruli Ulcer following BCG or Mycolactone-Negative Mycobacterium ulcerans Vaccination. PLoS ONE, 2012, 7, e33406.	2.5	38
24	IL-10 overexpression predisposes to invasive aspergillosis by suppressing antifungal immunity. Journal of Allergy and Clinical Immunology, 2017, 140, 867-870.e9.	2.9	37
25	Protection versus pathology in tuberculosis: recent insights. Current Opinion in Immunology, 2012, 24, 431-437.	5.5	36
26	The rs5743836 polymorphism in TLR9 confers a population-based increased risk of non-Hodgkin lymphoma. Genes and Immunity, 2012, 13, 197-201.	4.1	35
27	Development of Inhalable Superparamagnetic Iron Oxide Nanoparticles (SPIONs) in Microparticulate System for Antituberculosis Drug Delivery. Advanced Healthcare Materials, 2018, 7, e1800124.	7.6	34
28	The Absence of HIF-1α Increases Susceptibility to Leishmania donovani Infection via Activation of BNIP3/mTOR/SREBP-1c Axis. Cell Reports, 2020, 30, 4052-4064.e7.	6.4	32
29	IL-17A Promotes Intracellular Growth of Mycobacterium by Inhibiting Apoptosis of Infected Macrophages. Frontiers in Immunology, 2015, 6, 498.	4.8	28
30	Study of the immunologic response of marine-derived collagen and gelatin extracts for tissue engineering applications. Acta Biomaterialia, 2022, 141, 123-131.	8.3	27
31	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Neglected Tropical Diseases, 2020, 14, e0008125.	3.0	25
32	Nitric oxide inhibits the accumulation of <scp>CD</scp> 4 ⁺ <scp>CD</scp> hi <scp>T</scp> bet ⁺ <scp>CDcells in mycobacterial infection. European Journal of Immunology, 2012, 42, 3267-3279.</scp>	p>6 9 øsup>	lo≪⊈stup> <scp< td=""></scp<>
33	Myeloid Sirtuin 2 Expression Does Not Impact Long-Term Mycobacterium tuberculosis Control. PLoS ONE, 2015, 10, e0131904.	2.5	24
34	What Do We Really Know about How CD4 T Cells Control Mycobacterium tuberculosis?. PLoS Pathogens, 2011, 7, e1002196.	4.7	23
35	Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Materials Science and Engineering C, 2018, 93, 1090-1103.	7.3	23
36	The impact of IL-10 dynamic modulation on host immune response against visceral leishmaniasis. Cytokine, 2018, 112, 16-20.	3.2	23

EGÃĐIO TORRADO

#	Article	IF	CITATIONS
37	A Nonribosomal Peptide Synthase Gene Driving Virulence in Mycobacterium tuberculosis. MSphere, 2018, 3, .	2.9	20
38	L-Threonine Supplementation During Colitis Onset Delays Disease Recovery. Frontiers in Physiology, 2018, 9, 1247.	2.8	20
39	Antibacterial free-standing polysaccharide composite films inspired by the sea. International Journal of Biological Macromolecules, 2019, 133, 933-944.	7.5	19
40	Myeloid HIFâ€1α regulates pulmonary inflammation during experimental Mycobacterium tuberculosis infection. Immunology, 2020, 159, 121-129.	4.4	17
41	Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology, 2021, 88, 170-186.	3.8	14
42	Immune-evasion Strategies of Mycobacteria and Their Implications for the Protective Immune Response. Current Issues in Molecular Biology, 2018, 25, 169-198.	2.4	12
43	PTX3 Polymorphisms Influence Cytomegalovirus Reactivation After Stem-Cell Transplantation. Frontiers in Immunology, 2019, 10, 88.	4.8	9
44	Changes in the Immune Phenotype and Gene Expression Profile Driven by a Novel Tuberculosis Nanovaccine: Short and Long-Term Post-immunization. Frontiers in Immunology, 2020, 11, 589863.	4.8	8
45	Early IL-10 promotes vasculature-associated CD4+ T cells unable to control Mycobacterium tuberculosis infection. JCI Insight, 2021, 6, .	5.0	8
46	Novel Antibacterial and Bioactive Silicate Glass Nanoparticles for Biomedical Applications. Advanced Engineering Materials, 2018, 20, 1700855.	3.5	7
47	Ploidy Determination in the Pathogenic Fungus Sporothrix spp Frontiers in Microbiology, 2019, 10, 284.	3.5	6
48	Increased CD3+, CD8+, or FoxP3+ T Lymphocyte Infiltrations Are Associated with the Pathogenesis of Colorectal Cancer but Not with the Overall Survival of Patients. Biology, 2021, 10, 808.	2.8	6
49	Aetiopathogenesis, immunology and microbiology of tuberculosis. , 0, , 62-82.		1
50	Metabolic Host Response to Intracellular Infections. Experientia Supplementum (2012), 2018, 109, 319-350.	0.9	0
51	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
52	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
53	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0
54	Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. , 2020, 14, e0008125.		0