List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5966745/publications.pdf Version: 2024-02-01

Ριτη Ολεγοιο

#	Article	IF	CITATIONS
1	Machine learning solutions for predicting protein–protein interactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, .	6.2	19
2	A Glance into MTHFR Deficiency at a Molecular Level. International Journal of Molecular Sciences, 2022, 23, 167.	1.8	2
3	Turning Failures into Applications: The Problem of Protein ΔΔG Prediction. Methods in Molecular Biology, 2022, 2449, 169-185.	0.4	5
4	On the critical review of five machine learning-based algorithms for predicting protein stability changes upon mutation. Briefings in Bioinformatics, 2021, 22, 601-603.	3.2	13
5	Computer-Aided Prediction of Protein Mitochondrial Localization. Methods in Molecular Biology, 2021, 2275, 433-452.	0.4	2
6	Whole Genome Sequence Analysis of Brucella abortus Isolates from Various Regions of South Africa. Microorganisms, 2021, 9, 570.	1.6	6
7	Huntingtin: A Protein with a Peculiar Solvent Accessible Surface. International Journal of Molecular Sciences, 2021, 22, 2878.	1.8	3
8	Biallelic variants in <i>LIG3</i> cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain, 2021, 144, 1451-1466.	3.7	28
9	BetAware-Deep: An Accurate Web Server for Discrimination and Topology Prediction of Prokaryotic Transmembrane β-barrel Proteins. Journal of Molecular Biology, 2021, 433, 166729.	2.0	13
10	Computational Resources for Molecular Biology 2021. Journal of Molecular Biology, 2021, 433, 166962.	2.0	0
11	BENZ WS: the Bologna ENZyme Web Server for four-level EC number annotation. Nucleic Acids Research, 2021, 49, W60-W66.	6.5	7
12	Mapping OMIM Disease–Related Variations on Protein Domains Reveals an Association Among Variation Type, Pfam Models, and Disease Classes. Frontiers in Molecular Biosciences, 2021, 8, 617016.	1.6	5
13	DOME: recommendations for supervised machine learning validation in biology. Nature Methods, 2021, 18, 1122-1127.	9.0	105
14	DeepREx-WS: A web server for characterising protein–solvent interaction starting from sequence. Computational and Structural Biotechnology Journal, 2021, 19, 5791-5799.	1.9	4
15	Comparative genomics of tadpole shrimps (Crustacea, Branchiopoda, Notostraca): Dynamic genome evolution against the backdrop of morphological stasis. Genomics, 2021, 113, 4163-4172.	1.3	7
16	DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics, 2020, 36, 56-64.	1.8	61
17	Protein–Protein Interaction Methods and Protein Phase Separation. Annual Review of Biomedical Data Science, 2020, 3, 89-112.	2.8	18
18	Highlighting Human Enzymes Active in Different Metabolic Pathways and Diseases: The Case Study of EC 1.2.3.1 and EC 2.3.1.9. Biomedicines, 2020, 8, 250.	1.4	3

#	Article	IF	CITATIONS
19	Large-scale prediction and analysis of protein sub-mitochondrial localization with DeepMito. BMC Bioinformatics, 2020, 21, 266.	1.2	6
20	NETGE-PLUS: Standard and Network-Based Gene Enrichment Analysis in Human and Model Organisms. Journal of Proteome Research, 2020, 19, 2873-2878.	1.8	3
21	Cauliflower Mosaic Virus TAV, a Plant Virus Protein That Functions like Ribonuclease H1 and is Cytotoxic to Glioma Cells. BioMed Research International, 2020, 2020, 1-10.	0.9	2
22	Solvent Accessibility of Residues Undergoing Pathogenic Variations in Humans: From Protein Structures to Protein Sequences. Frontiers in Molecular Biosciences, 2020, 7, 626363.	1.6	58
23	Transmembrane Domain Prediction. , 2019, , 46-52.		0
24	Protein Functional Annotation. , 2019, , 8-14.		0
25	PhenPath: a tool for characterizing biological functions underlying different phenotypes. BMC Genomics, 2019, 20, 548.	1.2	8
26	Assessing predictions on fitness effects of missense variants in calmodulin. Human Mutation, 2019, 40, 1463-1473.	1.1	8
27	Assessing predictions of the impact of variants on splicing in CAGI5. Human Mutation, 2019, 40, 1215-1224.	1.1	18
28	CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases. Human Mutation, 2019, 40, 1373-1391.	1.1	10
29	Assessment of blind predictions of the clinical significance of <i>BRCA1</i> and <i>BRCA2</i> variants. Human Mutation, 2019, 40, 1546-1556.	1.1	19
30	Assessing computational predictions of the phenotypic effect of cystathionineâ€betaâ€synthase variants. Human Mutation, 2019, 40, 1530-1545.	1.1	5
31	Assessment of predicted enzymatic activity of α― <i>N</i> â€acetylglucosaminidase variants of unknown significance for CAGI 2016. Human Mutation, 2019, 40, 1519-1529.	1.1	10
32	Performance of computational methods for the evaluation of pericentriolar material 1 missense variants in CAGlâ€5. Human Mutation, 2019, 40, 1474-1485.	1.1	8
33	Evaluating the predictions of the protein stability change upon single amino acid substitutions for the FXN CAGI5 challenge. Human Mutation, 2019, 40, 1392-1399.	1.1	16
34	Assessing the performance of in silico methods for predicting the pathogenicity of variants in the gene CHEK2, among Hispanic females with breast cancer. Human Mutation, 2019, 40, 1612-1622.	1.1	8
35	Assessment of methods for predicting the effects of PTEN and TPMT protein variants. Human Mutation, 2019, 40, 1495-1506.	1.1	16
36	Predicting venous thromboembolism risk from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Human Mutation, 2019, 40, 1314-1320.	1.1	10

#	Article	IF	CITATIONS
37	Are machine learning based methods suited to address complex biological problems? Lessons from CACIâ€5 challenges. Human Mutation, 2019, 40, 1455-1462.	1.1	6
38	Genomic tools for durum wheat breeding: de novo assembly of Svevo transcriptome and SNP discovery in elite germplasm. BMC Genomics, 2019, 20, 278.	1.2	7
39	Functional and Structural Features of Disease-Related Protein Variants. International Journal of Molecular Sciences, 2019, 20, 1530.	1.8	15
40	Molecular modelling evaluation of exon 18 His845_Asn848delinsPro PDGFRα mutation in a metastatic GIST patient responding to imatinib. Scientific Reports, 2019, 9, 2172.	1.6	5
41	The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens. Genome Biology, 2019, 20, 244.	3.8	261
42	On the biases in predictions of protein stability changes upon variations: the INPS test case. Bioinformatics, 2019, 35, 2525-2527.	1.8	32
43	Draft genomes and genomic divergence of two <i>Lepidurus</i> tadpole shrimp species (Crustacea,) Tj ETQq1 1	0.784314 2.2	rgBT /Ove
44	Mutant MYO1F alters the mitochondrial network and induces tumor proliferation in thyroid cancer. International Journal of Cancer, 2018, 143, 1706-1719.	2.3	35
45	DeepSig: deep learning improves signal peptide detection in proteins. Bioinformatics, 2018, 34, 1690-1696.	1.8	92
46	BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Research, 2018, 46, W459-W466.	6.5	270
47	SChloro: directing <i>Viridiplantae</i> proteins to six chloroplastic sub-compartments. Bioinformatics, 2017, 33, 347-353.	1.8	21
48	Blind prediction of deleterious amino acid variations with SNPs&GO. Human Mutation, 2017, 38, 1064-1071.	1.1	24
49	The Bologna Annotation Resource (BAR 3.0): improving protein functional annotation. Nucleic Acids Research, 2017, 45, W285-W290.	6.5	18
50	Benchmarking predictions of allostery in liver pyruvate kinase in CAGI4. Human Mutation, 2017, 38, 1123-1131.	1.1	17
51	Performance of in silico tools for the evaluation of p16INK4a (CDKN2A) variants in CAGI. Human Mutation, 2017, 38, 1042-1050.	1.1	13
52	Working toward precision medicine: Predicting phenotypes from exomes in the Critical Assessment of Genome Interpretation (CAGI) challenges. Human Mutation, 2017, 38, 1182-1192.	1.1	39
53	ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model. Bioinformatics, 2017, 33, 1656-1663.	1.8	28
54	eDGAR: a database of Disease-Gene Associations with annotated Relationships among genes. BMC Genomics, 2017, 18, 554.	1.2	52

#	Article	IF	CITATIONS
55	BRCA1 p.His1673del is a pathogenic mutation associated with a predominant ovarian cancer phenotype. Oncotarget, 2017, 8, 22640-22648.	0.8	10
56	Function Prediction of Proteins from their Sequences with BAR 3.0. , 2017, 1, 001-005.		0
57	Genomic and expression analyses of Tursiops truncatus T cell receptor gamma (TRC) and alpha/delta (TRA/TRD) loci reveal a similar basic public l³l´ repertoire in dolphin and human. BMC Genomics, 2016, 17, 634.	1.2	32
58	INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics, 2016, 32, 2542-2544.	1.8	170
59	An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 2016, 17, 184.	3.8	308
60	NET-GE: a web-server for NETwork-based human gene enrichment. Bioinformatics, 2016, 32, 3489-3491.	1.8	14
61	Large scale analysis of protein stability in OMIM disease related human protein variants. BMC Genomics, 2016, 17, 397.	1.2	37
62	Ancient pathogen-driven adaptation triggers increased susceptibility to non-celiac wheat sensitivity in present-day European populations. Genes and Nutrition, 2016, 11, 15.	1.2	5
63	Tools and data services registry: a community effort to document bioinformatics resources. Nucleic Acids Research, 2016, 44, D38-D47.	6.5	113
64	NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases. BMC Genomics, 2015, 16, S6.	1.2	15
65	AlignBucket: a tool to speed up â€~all-against-all' protein sequence alignments optimizing length constraints. Bioinformatics, 2015, 31, 3841-3843.	1.8	3
66	TPpred3 detects and discriminates mitochondrial and chloroplastic targeting peptides in eukaryotic proteins. Bioinformatics, 2015, 31, 3269-3275.	1.8	46
67	INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics, 2015, 31, 2816-2821.	1.8	109
68	Modulating the thermostability of Endoglucanase I from Trichoderma reesei using computational approaches. Protein Engineering, Design and Selection, 2015, 28, 127-135.	1.0	40
69	A highâ€density, <scp>SNP</scp> â€based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnology Journal, 2015, 13, 648-663.	4.1	386
70	Computer-Based Prediction of Mitochondria-Targeting Peptides. Methods in Molecular Biology, 2015, 1264, 305-320.	0.4	6
71	Protein Sequence Annotation by Means of Community Detection. Current Bioinformatics, 2015, 10, 139-143.	0.7	0
72	Searching for signatures of cold adaptations in modern and archaic humans: hints from the brown adipose tissue genes. Heredity, 2014, 113, 259-267.	1.2	32

#	Article	IF	CITATIONS
73	Highâ€throughput <scp>SNP</scp> discovery in the rabbit (<i><scp>O</scp>ryctolagus cuniculus</i>) genome by nextâ€generation semiconductorâ€based sequencing. Animal Genetics, 2014, 45, 304-307.	0.6	14
74	TPpred2: improving the prediction of mitochondrial targeting peptide cleavage sites by exploiting sequence motifs. Bioinformatics, 2014, 30, 2973-2974.	1.8	34
75	Characteristics of the somatic hypermutation in the Camelus dromedarius T cell receptor gamma (TRG) and delta (TRD) variable domains. Developmental and Comparative Immunology, 2014, 46, 300-313.	1.0	48
76	Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. European Journal of Human Genetics, 2014, 22, 32-39.	1.4	90
77	How to inherit statistically validated annotation within BAR+ protein clusters. BMC Bioinformatics, 2013, 14, S4.	1.2	8
78	Prediction of disulfide connectivity in proteins with machine-learning methods and correlated mutations. BMC Bioinformatics, 2013, 14, S10.	1.2	10
79	WS-SNPs&GO: a web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 2013, 14, S6.	1.2	248
80	The side chain of glutamine 13 is the acyl-donor amino acid modified by type 2 transglutaminase in subunit T of the native rabbit skeletal muscle troponin complex. Amino Acids, 2013, 44, 227-234.	1.2	1
81	Expression of different forms of transglutaminases by immature cells of Helianthus tuberosus sprout apices. Amino Acids, 2013, 44, 271-283.	1.2	14
82	BCov: a method for predicting \hat{l}^2 -sheet topology using sparse inverse covariance estimation and integer programming. Bioinformatics, 2013, 29, 3151-3157.	1.8	17
83	Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Protein Engineering, Design and Selection, 2013, 26, 1-13.	1.0	25
84	A large-scale evaluation of computational protein function prediction. Nature Methods, 2013, 10, 221-227.	9.0	789
85	Expression of IGF-1 receptor in KIT/PDGF receptor-α wild-type gastrointestinal stromal tumors with succinate dehydrogenase complex dysfunction. Future Oncology, 2013, 9, 121-126.	1.1	30
86	Haplotype of Single Nucleotide Polymorphisms in Exon 6 of the MZF-1 Gene and Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 34, 439-447.	1.2	5
87	The prediction of organelle-targeting peptides in eukaryotic proteins with Grammatical-Restrained Hidden Conditional Random Fields. Bioinformatics, 2013, 29, 981-988.	1.8	17
88	Extended and Robust Protein Sequence Annotation over Conservative Nonhierarchical Clusters. ACM Journal on Emerging Technologies in Computing Systems, 2013, 9, 1-8.	1.8	1
89	BETAWARE: a machine-learning tool to detect and predict transmembrane beta-barrel proteins in prokaryotes. Bioinformatics, 2013, 29, 504-505.	1.8	41
90	Frataxin mRNA Isoforms in FRDA Patients and Normal Subjects: Effect of Tocotrienol Supplementation. BioMed Research International, 2013, 2013, 1-9.	0.9	15

#	Article	IF	CITATIONS
91	SUS-BAR: a database of pig proteins with statistically validated structural and functional annotation. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat065-bat065.	1.4	4
92	CBFA2T3-GLIS2 fusion transcript is a novel common feature in pediatric, cytogenetically normal AML, not restricted to FAB M7 subtype. Blood, 2013, 121, 3469-3472.	0.6	119
93	MIMO: an efficient tool for molecular interaction maps overlap. BMC Bioinformatics, 2013, 14, 159.	1.2	16
94	Mapping and Annotating Obesity-Related Genes in Pig And Human Genomes. Protein and Peptide Letters, 2013, 21, 840-846.	0.4	2
95	Generation of diversity by somatic mutation in the <scp><i>C</i></scp> <i>amelus dromedarius</i> <scp>T</scp> â€cell receptor gamma variable domains. European Journal of Immunology, 2012, 42, 3416-3428.	1.6	27
96	Exploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics, 2012, 100, 245-251.	1.3	19
97	A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genomics, 2012, 13, 583.	1.2	80
98	The human "magnesome": detecting magnesium binding sites on human proteins. BMC Bioinformatics, 2012, 13, S10.	1.2	26
99	Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in Italian Large White pigs using a selective genotyping approach1. Journal of Animal Science, 2012, 90, 2450-2464.	0.2	65
100	On the effect of protein conformation diversity in discriminating among neutral and disease related single amino acid substitutions. BMC Genomics, 2012, 13, S5.	1.2	35
101	Predicting cancer-associated germline variations in proteins. BMC Genomics, 2012, 13, S8.	1.2	28
102	Machine-Learning Methods to Predict Protein Interaction Sites in Folded Proteins. Lecture Notes in Computer Science, 2012, , 127-135.	1.0	2
103	Is There an Optimal Substitution Matrix for Contact Prediction with Correlated Mutations?. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8, 1017-1028.	1.9	7
104	SDHA Loss-of-Function Mutations in KIT-PDGFRA Wild-Type Gastrointestinal Stromal Tumors Identified by Massively Parallel Sequencing. Journal of the National Cancer Institute, 2011, 103, 983-987.	3.0	137
105	EX-HOM (EXome HOMozygosity): A Proof of Principle. Human Heredity, 2011, 72, 45-53.	0.4	27
106	A novel subfamily of mitochondrial dicarboxylate carriers from Drosophila melanogaster: Biochemical and computational studies. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 251-261.	0.5	18
107	Blurring contact maps of thousands of proteins: what we can learn by reconstructing 3D structure. BioData Mining, 2011, 4, 1.	2.2	46
108	Correlating disease-related mutations to their effect on protein stability: A large-scale analysis of the human proteome. Human Mutation, 2011, 32, 1161-1170.	1.1	89

#	Article	IF	CITATIONS
109	Improving the detection of transmembrane β-barrel chains with N-to-1 extreme learning machines. Bioinformatics, 2011, 27, 3123-3128.	1.8	21
110	Improving the prediction of disulfide bonds in Eukaryotes with machine learning methods and protein subcellular localization. Bioinformatics, 2011, 27, 2224-2230.	1.8	37
111	MemLoci: predicting subcellular localization of membrane proteins in eukaryotes. Bioinformatics, 2011, 27, 1224-1230.	1.8	49
112	MemPype: a pipeline for the annotation of eukaryotic membrane proteins. Nucleic Acids Research, 2011, 39, W375-W380.	6.5	28
113	BAR-PLUS: the Bologna Annotation Resource Plus for functional and structural annotation of protein sequences. Nucleic Acids Research, 2011, 39, W197-W202.	6.5	22
114	ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing. Nucleic Acids Research, 2011, 39, D80-D85.	6.5	38
115	Divide and Conquer Strategies for Protein Structure Prediction. , 2011, , 23-46.		3
116	Prediction of the Bonding State of Cysteine Residues in Proteins with Machine-Learning Methods. Lecture Notes in Computer Science, 2011, , 98-111.	1.0	3
117	The Prediction of Protein-Protein Interacting Sites in Genome-Wide Protein Interaction Networks: The Test Case of the Human Cell Cycle. Current Protein and Peptide Science, 2010, 11, 601-608.	0.7	10
118	Thermodynamics of binding of regulatory ligands to tissue transglutaminase. Amino Acids, 2010, 39, 297-304.	1.2	16
119	An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics, 2010, 11, 639.	1.2	120
120	Allergenicity of different apple cultivars assessed by means of skin prick test and sensitisation to recombinant allergens Mal d 1 and Mal d 3 in a group of Italian apple-allergic patients. International Journal of Food Science and Technology, 2010, 45, 1517-1523.	1.3	12
121	Fast overlapping of protein contact maps by alignment of eigenvectors. Bioinformatics, 2010, 26, 2250-2258.	1.8	39
122	Topology prediction of membrane proteins: how distantly related homologs come into play. , 2010, , 61-82.		1
123	Improving Coiled-Coil Prediction with Evolutionary Information. Lecture Notes in Computer Science, 2010, , 20-32.	1.0	1
124	On the Reconstruction of Three-dimensional Protein Structures from Contact Maps. Algorithms, 2009, 2, 76-92.	1.2	4
125	CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information. Bioinformatics, 2009, 25, 2757-2763.	1.8	46
126	A graph theoretic approach to protein structure selection. Artificial Intelligence in Medicine, 2009, 45, 229-237.	3.8	6

#	Article	IF	CITATIONS
127	Functional annotations improve the predictive score of human disease-related mutations in proteins. Human Mutation, 2009, 30, 1237-1244.	1.1	552
128	Plant and animal transglutaminases: do similar functions imply similar structures?. Amino Acids, 2009, 36, 643-657.	1.2	51
129	The Bologna Annotation Resource: a Non Hierarchical Method for the Functional and Structural Annotation of Protein Sequences Relying on a Comparative Large-Scale Genome Analysis. Journal of Proteome Research, 2009, 8, 4362-4371.	1.8	9
130	Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications. Algorithms for Molecular Biology, 2009, 4, 13.	0.3	17
131	Sequence-based feature prediction and annotation of proteins. Genome Biology, 2009, 10, 206.	13.9	53
132	The FAGenomicH project: towards a whole candidate gene approach to identify markers associated with fatness and production traits in pigs and investigate the pig as a model for human obesity. Italian Journal of Animal Science, 2009, 8, 87-89.	0.8	0
133	Prediction of Protein-Protein Interacting Sites: How to Bridge Molecular Events to Large Scale Protein Interaction Networks. Lecture Notes in Computer Science, 2009, , 1-17.	1.0	2
134	On the Upper Bound of the Prediction Accuracy of Residue Contacts in Proteins with Correlated Mutations: The Case Study of the Similarity Matrices. Lecture Notes in Computer Science, 2009, , 62-72.	1.0	0
135	A New Protein Representation Based on Fragment Contacts: Towards an Improvement of Contact Maps Predictions. Lecture Notes in Computer Science, 2009, , 210-221.	1.0	1
136	A combined approach of mass spectrometry, molecular modeling, and siteâ€directed mutagenesis highlights key structural features responsible for the thermostability of <i>Sulfolobus solfataricus</i> carboxypeptidase. Proteins: Structure, Function and Bioinformatics, 2008, 71, 1843-1852.	1.5	6
137	Use of estimated evolutionary strength at the codon level improves the prediction of disease-related protein mutations in humans. Human Mutation, 2008, 29, 198-204.	1.1	37
138	The Pros and Cons of Predicting Protein Contact Maps. , 2008, 413, 199-217.		18
139	Prediction of the disulfide-bonding state of cysteines in proteins at 88% accuracy. Protein Science, 2008, 11, 2735-2739.	3.1	30
140	PredGPI: a GPI-anchor predictor. BMC Bioinformatics, 2008, 9, 392.	1.2	553
141	A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 2008, 9, S6.	1.2	267
142	Reconstruction of 3D Structures From Protein Contact Maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008, 5, 357-367.	1.9	69
143	FT-COMAR: fault tolerant three-dimensional structure reconstruction from protein contact maps. Bioinformatics, 2008, 24, 1313-1315.	1.8	52
144	Predicting protein thermostability changes from sequence upon multiple mutations. Bioinformatics, 2008, 24, i190-i195.	1.8	41

#	Article	IF	CITATIONS
145	Progress and challenges in predicting protein-protein interaction sites. Briefings in Bioinformatics, 2008, 10, 233-246.	3.2	145
146	The prediction of protein subcellular localization from sequence: a shortcut to functional genome annotation. Briefings in Functional Genomics & Proteomics, 2008, 7, 63-73.	3.8	55
147	Thinking the Impossible: How to Solve the Protein Folding Problem With and Without Homologous Structures and More. , 2007, 350, 305-320.		9
148	eSLDB: eukaryotic subcellular localization database. Nucleic Acids Research, 2007, 35, D208-D212.	6.5	64
149	The implications of alternative splicing in the ENCODE protein complement. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5495-5500.	3.3	206
150	Molecular mechanism of thioredoxin regulation in photosynthetic A2B2-glyceraldehyde-3-phosphate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11109-11114.	3.3	76
151	Guest Editor's Introduction to the Special Section on Computational Biology and Bioinformatics (WABI) – Part 2. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 3-3.	1.9	2
152	Cloning, functional identification and structural modelling of Vitis vinifera S-adenosylmethionine decarboxylase. Journal of Plant Physiology, 2007, 164, 1208-1219.	1.6	8
153	Robust Determinants of Thermostability Highlighted by a Codon Frequency Index Capable of Discriminating Thermophilic from Mesophilic Genomes. Journal of Proteome Research, 2007, 6, 2502-2508.	1.8	7
154	Bioinformatics in Italy: BITS2006, the third annual meeting of the Italian Society of Bioinformatics. BMC Bioinformatics, 2007, 8, .	1.2	0
155	A computational approach for detecting peptidases and their specific inhibitors at the genome level. BMC Bioinformatics, 2007, 8, S3.	1.2	5
156	Prediction of Structurally-Determined Coiled-Coil Domains with Hidden Markov Models. , 2007, , 292-302.		13
157	Reconstruction of 3D Structures from Protein Contact Maps. Lecture Notes in Computer Science, 2007, , 578-589.	1.0	11
158	Fault Tolerance for Large Scale Protein 3D Reconstruction from Contact Maps. Lecture Notes in Computer Science, 2007, , 25-37.	1.0	6
159	High Throughput Protein Similarity Searches in the LIBI Grid Problem Solving Environment. Lecture Notes in Computer Science, 2007, , 414-423.	1.0	1
160	New Escherichia coli outer membrane proteins identified through prediction and experimental verification. Protein Science, 2006, 15, 884-889.	3.1	43
161	Machine learning and the prediction of protein structure: the state of the art. , 2006, , 359-370.		0
162	Guest Editor's Introduction to the Special Issue on Computational Biology and Bioinformatics - Part 1. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 321-322.	1.9	0

#	Article	IF	CITATIONS
163	Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 563-572.	1.1	11
164	Hierarchical Mechanochemical Switches in Angiostatin. ChemBioChem, 2006, 7, 1774-1782.	1.3	14
165	PONGO: a web server for multiple predictions of all-alpha transmembrane proteins. Nucleic Acids Research, 2006, 34, W169-W172.	6.5	37
166	BaCelLo: a balanced subcellular localization predictor. Bioinformatics, 2006, 22, e408-e416.	1.8	309
167	The WWWH of remote homolog detection: The state of the art. Briefings in Bioinformatics, 2006, 8, 78-87.	3.2	33
168	A Study of the Binding Mode and the In Vitro Activity of the Protein Tyrosine Kinase Inhibitor SKI-606 in the BCR-ABL Positive Cells Blood, 2006, 108, 2335-2335.	0.6	0
169	Overview of BITS2005, the Second Annual Meeting of the Italian Bioinformatics Society. BMC Bioinformatics, 2005, 6, S1.	1.2	8
170	A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins. BMC Bioinformatics, 2005, 6, S12.	1.2	54
171	Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics, 2005, 6, S20.	1.2	65
172	Oligomerization ofSulfolobus solfataricussignature amidase is promoted by acidic pH and high temperature. Archaea, 2005, 1, 411-423.	2.3	8
173	Predicting protein stability changes from sequences using support vector machines. Bioinformatics, 2005, 21, ii54-ii58.	1.8	142
174	Substrate-induced conformational changes of the mitochondrial oxoglutarate carrier: a spectroscopic and molecular modelling study. Molecular Membrane Biology, 2005, 22, 443-452.	2.0	19
175	Histone deacetylase 1: a target of 9-hydroxystearic acid in the inhibition of cell growth in human colon cancer. Journal of Lipid Research, 2005, 46, 1596-1603.	2.0	41
176	l-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 2005, 33, W306-W310.	6.5	1,502
177	The Ectodomain of Herpes Simplex Virus Glycoprotein H Contains a Membrane α-Helix with Attributes of an Internal Fusion Peptide, Positionally Conserved in the Herpesviridae Family. Journal of Virology, 2005, 79, 2931-2940.	1.5	74
178	TRAMPLE: the transmembrane protein labelling environment. Nucleic Acids Research, 2005, 33, W198-W201.	6.5	11
179	Preprotein Translocase of the Outer Mitochondrial Membrane: Reconstituted Tom40 Forms a Characteristic TOM Pore. Journal of Molecular Biology, 2005, 353, 1011-1020.	2.0	89
180	Functional Characterization of a Second Porin Isoform in Drosophila melanogaster. Journal of Biological Chemistry, 2004, 279, 25364-25373.	1.6	28

#	Article	IF	CITATIONS
181	ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics, 2004, 20, 1322-1324.	1.8	458
182	A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics, 2004, 20, i63-i68.	1.8	161
183	Reduction of Active Elastase Concentration by Means of Immobilized Inhibitors: A Novel Therapeutic Approach. Biotechnology Progress, 2004, 20, 968-974.	1.3	5
184	Isothermal and non-isothermal bioreactors in the detoxification of waste waters polluted by aromatic compounds by means of immobilised laccase from Rhus vernicifera. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 191-206.	1.8	44
185	Prediction of disulfide-bonded cysteines in proteomes with a hidden neural network. Proteomics, 2004, 4, 1665-1671.	1.3	44
186	The Prediction of Membrane Protein Structure and Genome Structural Annotation. Comparative and Functional Genomics, 2003, 4, 406-409.	2.0	4
187	The 4th Bologna Winter School: Hot Topics in Structural Genomics. Comparative and Functional Genomics, 2003, 4, 394-396.	2.0	0
188	A Shannon entropy-based filter detects high- quality profile-profile alignments in searches for remote homologues. Proteins: Structure, Function and Bioinformatics, 2003, 54, 351-360.	1.5	12
189	Fishing new proteins in the twilight zone of genomes: The test case of outer membrane proteins inEscherichia coliK12,Escherichia coliO157:H7, and other Gram-negative bacteria. Protein Science, 2003, 12, 1158-1168.	3.1	35
190	3D Structure of Sulfolobus solfataricus Carboxypeptidase Developed by Molecular Modeling is Confirmed by Site-Directed Mutagenesis and Small Angle X-Ray Scattering. Biophysical Journal, 2003, 85, 1165-1175.	0.2	19
191	An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics, 2003, 19, i205-i211.	1.8	78
192	In silico prediction of the structure of membrane proteins: Is it feasible?. Briefings in Bioinformatics, 2003, 4, 341-348.	3.2	21
193	MaxSubSeq: an algorithm for segment-length optimization. The case study of the transmembrane spanning segments. Bioinformatics, 2003, 19, 500-505.	1.8	23
194	SPEPlip: the detection of signal peptide and lipoprotein cleavage sites. Bioinformatics, 2003, 19, 2498-2499.	1.8	69
195	Prediction of Signal Peptide in Proteins with Neural Networks. Lecture Notes in Computer Science, 2003, , 237-244.	1.0	0
196	Substitution in the Murine Nectin1 Receptor of a Single Conserved Amino Acid at a Position Distal from the Herpes Simplex Virus gD Binding Site Confers High-Affinity Binding to gD. Journal of Virology, 2002, 76, 5463-5471.	1.5	20
197	Transglutaminases: Nature's biological glues. Biochemical Journal, 2002, 368, 377-396.	1.7	955
198	A sequence-profile-based HMM for predicting and discriminating Î ² barrel membrane proteins. Bioinformatics, 2002, 18, S46-S53.	1.8	182

#	Article	IF	CITATIONS
199	A low-resolution 3D model of the tetrameric alcohol dehydrogenase from Sulfolobus solfataricus. Protein Engineering, Design and Selection, 2002, 15, 215-223.	1.0	6
200	Prediction of the disulfide bonding state of cysteines in proteins with hidden neural networks. Protein Engineering, Design and Selection, 2002, 15, 951-953.	1.0	49
201	Protein structure prediction and biomolecular recognition: From protein sequence to peptidomimetic design with the human Î ² 3 integrin. SAR and QSAR in Environmental Research, 2002, 13, 473-486.	1.0	2
202	A 3D model of the voltage-dependent anion channel (VDAC). FEBS Letters, 2002, 520, 1-7.	1.3	87
203	Effect of molecular confinement on internal enzyme dynamics: Frequency domain fluorometry and molecular dynamics simulation studies. Biopolymers, 2002, 67, 85-95.	1.2	46
204	Prediction of protein-protein interaction sites in heterocomplexes with neural networks. FEBS Journal, 2002, 269, 1356-1361.	0.2	225
205	Prediction of coordination number and relative solvent accessibility in proteins. Proteins: Structure, Function and Bioinformatics, 2002, 47, 142-153.	1.5	222
206	Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor. Protein Science, 2001, 10, 779-787.	3.1	111
207	Model of interaction of the IL-1 receptor accessory protein IL-1RAcP with the IL-1β/IL-1RIcomplex. FEBS Letters, 2001, 499, 65-68.	1.3	64
208	Structure-based computational study of the catalytic and inhibition mechanisms of urease. Journal of Biological Inorganic Chemistry, 2001, 6, 300-314.	1.1	110
209	Progress in predicting inter-residue contacts of proteins with neural networks and correlated mutations. Proteins: Structure, Function and Bioinformatics, 2001, 45, 157-162.	1.5	86
210	Urease immobilisation on chemically grafted nylon membranes. Journal of Molecular Catalysis B: Enzymatic, 2001, 14, 15-29.	1.8	27
211	Influence of the immobilization process on the activity of β-galactosidase bound to Nylon membranes grafted with glycidyl methacrylate. Journal of Molecular Catalysis B: Enzymatic, 2001, 16, 175-189.	1.8	34
212	Analysis of canine parvovirus sequences from wolves and dogs isolated in Italy. Journal of General Virology, 2001, 82, 1555-1560.	1.3	93
213	Improved prediction of the number of residue contacts in proteins by recurrent neural networks. Bioinformatics, 2001, 17, S234-S242.	1.8	44
214	Prediction of contact maps with neural networks and correlated mutations. Protein Engineering, Design and Selection, 2001, 14, 835-843.	1.0	172
215	Predictions of protein segments with the same aminoacid sequence and different secondary structure: A benchmark for predictive methods. Proteins: Structure, Function and Bioinformatics, 2000, 41, 535-544.	1.5	41
216	The effect of tryptophanyl substitution on folding and structure of myoglobin. FEBS Journal, 2000, 267, 3937-3945.	0.2	35

#	Article	IF	CITATIONS
217	Tryptophanyl fluorescence lifetime distribution of hyperthermophilic βâ€glycosidase from molecular dynamics simulation: A comparison with the experimental data. Protein Science, 2000, 9, 1730-1742.	3.1	8
218	Neural Networks Predict Protein Folding and Structure: Artificial Intelligence Faces Biomolecular Complexity. SAR and QSAR in Environmental Research, 2000, 11, 149-182.	1.0	6
219	Ligand-Induced Conformational Changes in Tissue Transglutaminase: Monte Carlo Analysis of Small-Angle Scattering Data. Biophysical Journal, 2000, 78, 3240-3251.	0.2	52
220	Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: Theoretical clues for a plausible allosteric model of oxygen binding. Protein Science, 1999, 8, 1546-1550.	3.1	3
221	The structural basis for the regulation of tissue transglutaminase by calcium ions. FEBS Journal, 1999, 262, 672-679.	0.2	103
222	Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins. , 1999, 36, 340-346.		119
223	Role of evolutionary information in predicting the disulfide-bonding state of cysteine in proteins. , 1999, 36, 340.		3
224	A high diffusion coefficient for coenzyme Q10might be related to a folded structure. FEBS Letters, 1998, 426, 77-80.	1.3	46
225	Conformational Changes of Neuromedin B and Delta Sleep-Inducing Peptide Induced by Their Interaction with Lipid Membranes as Revealed by Spectroscopic Techniques and Molecular Dynamics Simulation. Archives of Biochemistry and Biophysics, 1998, 349, 225-235.	1.4	17
226	An entropy criterion to detect minimally frustrated intermediates in native proteins. Proceedings of the United States of America, 1998, 95, 9290-9294.	3.3	21
227	Electron Correlation in Quantum Molecular Biophysics: The Case Study of Hemocyanin. , 1998, , 139-159.		0
228	Ab Initio Study of the Mechanism of the Binding of Triplet O2 to Hemocyanin. Inorganic Chemistry, 1996, 35, 5207-5212.	1.9	47
229	DCCD-sensitive proton permeability of bacterial photosynthetic membranes. Cross-reconstitution studies with purified bovine heart Fo subunits. Biochimica Et Biophysica Acta - Bioenergetics, 1996, 1276, 80-86.	0.5	1
230	<title>Noise and randomlike behavior in perceptrons: theory and application to protein structure prediction</title> . , 1996, , .		1
231	CaATP inhibition of the MgATP-dependent proton pump (H+-ATPase) in bacterial photosynthetic membranes with a mechanism of alternative substrate inhibition. Journal of Biological Inorganic Chemistry, 1996, 1, 284-291.	1.1	14
232	An ab initio study of the dioxygen binding site of hemocyanin: A comparison between CASSCF, CASPT2, and DFT approaches. International Journal of Quantum Chemistry, 1996, 58, 109-119.	1.0	30
233	A predictor of transmembrane ?-helix domains of proteins based on neural networks. European Biophysics Journal, 1996, 24, 165-78.	1.2	23
234	Topology prediction for helical transmembrane proteins at 86% accuracy–Topology prediction at 86% accuracy. Protein Science, 1996, 5, 1704-1718.	3.1	574

#	Article	IF	CITATIONS
235	HTP: a neural network-based method for predicting the topology of helical transmembrane domains in proteins. Bioinformatics, 1996, 12, 41-48.	1.8	9
236	Characterization of 9-aminoacridine interaction with chromatophore membranes and modelling of the probe response to artificially induced transmembrane ΔpH values. Biochimica Et Biophysica Acta - Biomembranes, 1995, 1237, 23-30.	1.4	10
237	Transmembrane helices predicted at 95% accuracy. Protein Science, 1995, 4, 521-533.	3.1	628
238	Predicting secondary structures of membrane proteins with neural networks. European Biophysics Journal, 1993, 22, 41-51.	1.2	29
239	A mathematical model relating diffusion of hydrophobic ions to their adsorption on biological membranes as detected with a microdialyzer. Journal of Biological Physics, 1993, 19, 211-222.	0.7	1
240	Kinetic characterization of the ATP-dependent proton pump in bacterial photosynthetic membranes: a study with the fluorescent probe 9-amino-6-chloro-2-methoxyacridine. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1143, 215-222.	0.5	12
241	Calibration of the response of 9-amino acridine fluorescence to transmembrane pH differences in bacterial chromatophores. Archives of Biochemistry and Biophysics, 1985, 238, 219-228.	1.4	42
242	Rotational mobility and domain flexibility of membrane-bound bacterial coupling factor as detected with the triplet probe eosin-isothiocyanate. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 809, 215-227.	0.5	4
243	Fusion of bacteriorhodopsin with submitochondrial particles yields a new system with retention of energy coupling and acquisition of photophosphorylation activity. Biochimica Et Biophysica Acta - Bioenergetics, 1985, 810, 370-376.	0.5	3
244	The Determination of the Electrochemical Potential Difference of Protons in Bacterial Chromatophores. , 1985, , 409-424.		0
245	<pre>\$\$Delta ilde mu _{{m H}^ + } \$\$ determination in phospholipid vesicles reconstituted with aggregated and monomeric bacteriorhodopsindetermination in phospholipid vesicles reconstituted with aggregated and monomeric bacteriorhodopsin. Biophysics of Structure and Mechanism, 1981, 7, 291-291.</pre>	1.9	3
246	Effect of protein-protein interaction on light adaptation of bacteriorhodopsin. Biochemistry, 1980, 19, 3374-3381.	1.2	59
247	Limited cooperativity in the coupling between electron flow and photosynthetic ATP synthesis A comparative study in chromatophores phosphorylating at very different rates. FEBS Letters, 1978, 87, 323-328.	1.3	44
248	Thermodynamics and Kinetics of Photophosphorylation in Bacterial Chromatophores and Their Relation with the Transmembrane Electrochemical Potential Difference of Protons. FEBS Journal, 1977, 78, 389-402.	0.2	111
249	On the Determination of the Transmembrane pH Difference in Bacterial Chromatophores using 9-Aminoacridine. FEBS Journal, 1974, 47, 121-128.	0.2	77
250	Electrochemical proton gradient and phosphate potential in bacterial chromatophores. FEBS Letters, 1974, 49, 203-207.	1.3	40