Chun-Chi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5965271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural insight into catalytic mechanism of PET hydrolase. Nature Communications, 2017, 8, 2106.	5.8	309
2	Enzymatic degradation of plant biomass and synthetic polymers. Nature Reviews Chemistry, 2020, 4, 114-126.	13.8	213
3	Structural studies reveal the molecular mechanism of <scp>PET</scp> ase. FEBS Journal, 2018, 285, 3717-3723.	2.2	112
4	A Structural Change in Butyrophilin upon Phosphoantigen Binding Underlies Phosphoantigen-Mediated VÎ ³ 9VÎ ´2ÂT Cell Activation. Immunity, 2019, 50, 1043-1053.e5.	6.6	94
5	General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nature Catalysis, 2021, 4, 425-430.	16.1	92
6	Crystal structures of d-psicose 3-epimerase from Clostridium cellulolyticum H10 and its complex with ketohexose sugars. Protein and Cell, 2012, 3, 123-131.	4.8	69
7	Squalene Synthase As a Target for Chagas Disease Therapeutics. PLoS Pathogens, 2014, 10, e1004114.	2.1	64
8	Structural Analysis of a Glycoside Hydrolase Family 11 Xylanase from Neocallimastix patriciarum. Journal of Biological Chemistry, 2014, 289, 11020-11028.	1.6	64
9	Functional and structural studies of pullulanase from <i>Anoxybacillus</i> sp. LM18-11. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1685-1693.	1.5	55
10	KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discovery, 2022, 8, 5.	3.1	52
11	Substrate-Binding Mode of a Thermophilic PET Hydrolase and Engineering the Enzyme to Enhance the Hydrolytic Efficacy. ACS Catalysis, 2022, 12, 3033-3040.	5.5	50
12	Antibacterial Drug Leads: DNA and Enzyme Multitargeting. Journal of Medicinal Chemistry, 2015, 58, 1215-1227.	2.9	48
13	Diverse substrate recognition mechanism revealed by Thermotoga maritima Cel5A structures in complex with cellotetraose, cellobiose and mannotriose. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1832-1840.	1.1	47
14	Structure, function and inhibition of ent-kaurene synthase from Bradyrhizobium japonicum. Scientific Reports, 2014, 4, 6214.	1.6	44
15	Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design. Journal of Biotechnology, 2014, 175, 1-6.	1.9	43
16	Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Applied Microbiology and Biotechnology, 2015, 99, 9503-9510.	1.7	40
17	Enhancing PET hydrolytic enzyme activity by fusion of the cellulose–binding domain of cellobiohydrolase I from Trichoderma reesei. Journal of Biotechnology, 2021, 334, 47-50.	1.9	40
18	Crystal structure and substrate-binding mode of the mycoestrogen-detoxifying lactonase ZHD from Clonostachys rosea. RSC Advances, 2014, 4, 62321-62325.	1.7	37

#	Article	IF	CITATIONS
19	Improving the specific activity of β-mannanase from Aspergillus niger BK01 by structure-based rational design. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 663-669.	1.1	36
20	Enhanced α-Zearalenol Hydrolyzing Activity of a Mycoestrogen-Detoxifying Lactonase by Structure-Based Engineering. ACS Catalysis, 2016, 6, 7657-7663.	5.5	36
21	Characterization and crystal structure of a novel zearalenone hydrolase from <i>Cladophialophora bantiana</i> . Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 515-519.	0.4	35
22	Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase. Nature Communications, 2020, 11, 2676.	5.8	35
23	Crystal Structures of Bacillus Alkaline Phytase in Complex with Divalent Metal ions and Inositol Hexasulfate. Journal of Molecular Biology, 2011, 409, 214-224.	2.0	34
24	Functional and structural analysis of Pichia pastoris-expressed Aspergillus niger 1,4-β-endoglucanase. Biochemical and Biophysical Research Communications, 2016, 475, 8-12.	1.0	34
25	Crystal Structure of a Mycoestrogen-Detoxifying Lactonase from <i>Rhinocladiella mackenziei</i> : Molecular Insight into ZHD Substrate Selectivity. ACS Catalysis, 2018, 8, 4294-4298.	5.5	33
26	Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. Journal of Biotechnology, 2014, 189, 175-182.	1.9	32
27	Structure and Function of a "Headâ€ŧoâ€Middle―Prenyltransferase: Lavandulyl Diphosphate Synthase. Angewandte Chemie - International Edition, 2016, 55, 4721-4724.	7.2	32
28	Structural insight into potential cold adaptation mechanism through a psychrophilic glycoside hydrolase family 10 endo-β-1,4-xylanase. Journal of Structural Biology, 2016, 193, 206-211.	1.3	32
29	Overview of antiviral drug candidates targeting coronaviral 3Câ€like main proteases. FEBS Journal, 2021, 288, 5089-5121.	2.2	28
30	Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-β-d-glucanase. Applied Microbiology and Biotechnology, 2012, 94, 111-121.	1.7	27
31	Structural basis of collagen recognition by human osteoclast-associated receptor and design of osteoclastogenesis inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1038-1043.	3.3	25
32	Current Progresses in Phytase Research: Threeâ€Dimensional Structure and Protein Engineering. ChemBioEng Reviews, 2015, 2, 76-86.	2.6	24
33	"Headâ€ŧoâ€Middle―and "Headâ€ŧoâ€₹ail― <i>cis</i> â€Prenyl Transferases: Structure of Isosesquilava Diphosphate Synthase. Angewandte Chemie - International Edition, 2018, 57, 683-687.	ndulyl 7.2	24
34	Characterization and crystal structure of a thermostable glycoside hydrolase family 45 1,4-β-endoglucanase from Thielavia terrestris. Enzyme and Microbial Technology, 2017, 99, 32-37.	1.6	23
35	Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s. ChemBioChem, 2021, 22, 1317-1328.	1.3	23
36	Crystal structures of ligandâ€bound octaprenyl pyrophosphate synthase from <i>Escherichia coli</i> reveal the catalytic and chainâ€length determining mechanisms. Proteins: Structure, Function and Bioinformatics, 2015, 83, 37-45.	1.5	22

#	Article	IF	CITATIONS
37	VP2 Dominated CD4+ T Cell Responses against Enterovirus 71 and Cross-Reactivity against Coxsackievirus A16 and Polioviruses in a Healthy Population. Journal of Immunology, 2013, 191, 1637-1647.	0.4	21
38	Structures of Iridoid Synthase from <i>Cantharanthus roseus</i> with Bound NAD ⁺ , NADPH, or NAD ⁺ /10â€Oxogeranial: Reaction Mechanisms. Angewandte Chemie - International Edition, 2015, 54, 15478-15482.	7.2	21
39	Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. Biotechnology for Biofuels, 2018, 11, 159.	6.2	21
40	Structural and mutagenetic analyses of a 1,3–1,4-β-glucanase from Paecilomyces thermophila. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 366-373.	1.1	20
41	Functional and structural analyses of a 1,4-β-endoglucanase from Ganoderma lucidum. Enzyme and Microbial Technology, 2016, 86, 67-74.	1.6	20
42	Moenomycin Biosynthesis: Structure and Mechanism of Action of the Prenyltransferase MoeN5. Angewandte Chemie - International Edition, 2016, 55, 4716-4720.	7.2	19
43	Catalytic Role of Conserved Asparagine, Glutamine, Serine, and Tyrosine Residues in Isoprenoid Biosynthesis Enzymes. ACS Catalysis, 2018, 8, 4299-4312.	5.5	19
44	Structural insights to heterodimeric cis-prenyltransferases through yeast dehydrodolichyl diphosphate synthase subunit Nus1. Biochemical and Biophysical Research Communications, 2019, 515, 621-626.	1.0	19
45	Structure of an antibiotic-synthesizing UDP-glucuronate 4-epimerase MoeE5 in complex with substrate. Biochemical and Biophysical Research Communications, 2020, 521, 31-36.	1.0	19
46	Functional and structural investigation of a novel β-mannanase BaMan113A from Bacillus sp. N16-5. International Journal of Biological Macromolecules, 2021, 182, 899-909.	3.6	19
47	Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. Journal of Medicinal Chemistry, 2019, 62, 2564-2581.	2.9	18
48	Heat―and Alkaline‧table Xylanases: Application, Protein Structure and Engineering. ChemBioEng Reviews, 2015, 2, 95-106.	2.6	17
49	The substrate/product-binding modes of a novel GH120 β-xylosidase (XylC) from <i>Thermoanaerobacterium saccharolyticum</i> JW/SL-YS485. Biochemical Journal, 2012, 448, 401-407.	1.7	16
50	Combinatorial RNA Interference Therapy Prevents Selection of Pre-existing HBV Variants in Human Liver Chimeric Mice. Scientific Reports, 2015, 5, 15259.	1.6	16
51	Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Antiparasitic Drug Targets. ACS Chemical Biology, 2016, 11, 1362-1371.	1.6	15
52	Crystal structure of Lepl, a multifunctional SAM-dependent enzyme which catalyzes pericyclic reactions in leporin biosynthesis. Organic and Biomolecular Chemistry, 2019, 17, 2070-2076.	1.5	15
53	Versatile <i>cis</i> -isoprenyl Diphosphate Synthase Superfamily Members in Catalyzing Carbon–Carbon Bond Formation. ACS Catalysis, 2020, 10, 4717-4725.	5.5	14
54	Structural and functional analyses of catalytic domain of GH10 xylanase from <i>Thermoanaerobacterium saccharolyticum</i> JW/SLâ€YS485. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1256-1265.	1.5	13

#	Article	IF	CITATIONS
55	Structural analyses and yeast production of the β-1,3-1,4-glucanase catalytic module encoded by the licB gene of Clostridium thermocellum. Enzyme and Microbial Technology, 2015, 71, 1-7.	1.6	13
56	Terpene Cyclases and Prenyltransferases: Structures and Mechanisms of Action. ACS Catalysis, 2021, 11, 290-303.	5.5	13
57	Catalytically inactive lytic polysaccharide monooxygenase PcAA14A enhances the enzyme-mediated hydrolysis of polyethylene terephthalate. International Journal of Biological Macromolecules, 2021, 190, 456-462.	3.6	13
58	Molecular Basis for a Toluene Monooxygenase to Govern Substrate Selectivity. ACS Catalysis, 2022, 12, 2831-2839.	5.5	11
59	Insights into TIMâ€Barrel Prenyl Transferase Mechanisms: Crystal Structures of PcrB from <i>Bacillus subtilis</i> and <i>Staphylococcus aureus</i> . ChemBioChem, 2013, 14, 195-199.	1.3	10
60	Crystal structure and genetic modifications of FI-CMCase from Aspergillus aculeatus F-50. Biochemical and Biophysical Research Communications, 2016, 478, 565-572.	1.0	10
61	A Cyclic di-GMP Network Is Present in Gram-Positive <i>Streptococcus</i> and Gram-Negative <i>Proteus</i> Species. ACS Infectious Diseases, 2020, 6, 2672-2687.	1.8	10
62	The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angewandte Chemie - International Edition, 2018, 57, 15060-15064.	7.2	9
63	Substrate-analogue complex structure of <i>Mycobacterium tuberculosis</i> decaprenyl diphosphate synthase. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 212-216.	0.4	9
64	Crystal structure and biochemical analysis of the specialized deoxynivalenol–detoxifying glyoxalase SPG from Gossypium hirsutum. International Journal of Biological Macromolecules, 2022, 200, 388-396.	3.6	9
65	Crystal structures of S-adenosylhomocysteine hydrolase from the thermophilic bacterium Thermotoga maritima. Journal of Structural Biology, 2015, 190, 135-142.	1.3	8
66	Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis. Biochemical and Biophysical Research Communications, 2018, 495, 1782-1788.	1.0	8
67	Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Applied and Environmental Microbiology, 2022, 88, e0249721.	1.4	8
68	Functional and structural investigations of fibronectin-binding protein Apa from Mycobacterium tuberculosis. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1351-1359.	1.1	7
69	Functional and Structural Insights into a Novel Promiscuous Ketoreductase of the Lugdunomycin Biosynthetic Pathway. ACS Chemical Biology, 2020, 15, 2529-2538.	1.6	7
70	Structural insights into thebaine synthase 2 catalysis. Biochemical and Biophysical Research Communications, 2020, 529, 156-161.	1.0	7
71	Structural investigation of a thermostable 1,2-β-mannobiose phosphorylase from Thermoanaerobacter sp. X-514. Biochemical and Biophysical Research Communications, 2021, 579, 54-61.	1.0	6
72	Structure of a gut microbial diltiazem-metabolizing enzyme suggests possible substrate binding mode. Biochemical and Biophysical Research Communications, 2020, 527, 799-804.	1.0	6

#	Article	IF	CITATIONS
73	"Headâ€toâ€Middle―and "Headâ€toâ€Tail―cis â€Prenyl Transferases: Structure of Isosesquilavandulyl Diphosphate Synthase. Angewandte Chemie, 2018, 130, 691-695.	1.6	5
74	Complex structures of MoeN5 with substrate analogues suggest sequential catalytic mechanism. Biochemical and Biophysical Research Communications, 2019, 511, 800-805.	1.0	4
75	Structure basis of non-structural protein pA151R from African Swine Fever Virus. Biochemical and Biophysical Research Communications, 2020, 532, 108-113.	1.0	4
76	Preliminary X-ray diffraction analysis of octaprenyl pyrophosphate synthase from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 328-331.	0.7	3
77	Dendronized Arm Snowflake Polymer as a Highly Branched Scaffold for Cellular Imaging and Delivery. Biomacromolecules, 2021, 22, 3791-3799.	2.6	3
78	Preliminary X-ray diffraction analysis of thermostable β-1,4-mannanase fromAspergillus nigerBK01. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1100-1102.	0.7	3
79	Crystallization and preliminary X-ray diffraction analysis of an endo-1,4-β-D-glucanase fromAspergillus aculeatusF-50. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 397-400.	0.4	2
80	The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement. Angewandte Chemie, 2018, 130, 15280-15284.	1.6	2
81	Crystal structure and proposed mechanism of an enantioselective hydroalkoxylation enzyme from Penicillium herquei. Biochemical and Biophysical Research Communications, 2019, 516, 801-805.	1.0	2
82	Structural insights into the calcium dependence of Stig cyclases. RSC Advances, 2019, 9, 13182-13185.	1.7	2
83	Structural insights into the cyclization of unusual brasilane-type sesquiterpenes. International Journal of Biological Macromolecules, 2022, 209, 1784-1791.	3.6	2
84	A Structural and Bioinformatics Investigation of a Fungal Squalene Synthase and Comparisons with Other Membrane Proteins. ACS Omega, 2022, 7, 22601-22612.	1.6	2
85	Preliminary X-ray diffraction analysis of thermostable β-1,4-xylanase fromStreptomycessp. S9. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 105-107.	0.4	1
86	Preliminary X-ray diffraction analysis of a thermophilic β-1,3–1,4-glucanase fromClostridium thermocellum. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 946-948.	0.4	1
87	Crystal structure of TchmY from <i>Actinoplanes teichomyceticus</i> . Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 570-575.	0.4	1
88	Titelbild: Structures of Iridoid Synthase fromCantharanthus roseuswith Bound NAD+, NADPH, or NAD+/10-Oxogeranial: Reaction Mechanisms (Angew. Chem. 51/2015). Angewandte Chemie, 2015, 127, 15517-15517.	1.6	0
89	Innenrücktitelbild: "Headâ€toâ€Middle―and "Headâ€toâ€Tail― <i>cis</i> â€Prenyl Transferases: Struc Isosesquilavandulyl Diphosphate Synthase (Angew. Chem. 3/2018). Angewandte Chemie, 2018, 130, 861-861.	ture of	0
90	Rücktitelbild: The Crystal Structure of a Class of Cyclases that Catalyze the Cope Rearrangement (Angew. Chem. 46/2018). Angewandte Chemie, 2018, 130, 15506-15506.	1.6	0

#	Article	IF	CITATIONS
91	Structural insights to a bi-functional isoprenyl diphosphate synthase that can catalyze head-to-tail and head-to-middle condensation. International Journal of Biological Macromolecules, 2022, 214, 492-499.	3.6	0