
Alexander C Drohat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964963/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TET-TDG Active DNA Demethylation at CpG and Non-CpG Sites. Journal of Molecular Biology, 2021, 433, 166877.	2.0	21
2	Structural Insights into the Mechanism of Base Excision by MBD4. Journal of Molecular Biology, 2021, 433, 167097.	2.0	13
3	Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase. Journal of the American Chemical Society, 2019, 141, 18851-18861.	6.6	21
4	Defining the Role of Nucleotide Flipping in Enzyme Specificity Using 19F NMR. Journal of the American Chemical Society, 2019, 141, 4952-4962.	6.6	23
5	Kinetic Methods for Studying DNA Glycosylases Functioning in Base Excision Repair. Methods in Enzymology, 2017, 592, 357-376.	0.4	13
6	Characterizing Requirements for Small Ubiquitin-like Modifier (SUMO) Modification and Binding on Base Excision Repair Activity of Thymine-DNA Glycosylase in Vivo. Journal of Biological Chemistry, 2016, 291, 9014-9024.	1.6	15
7	Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues. Nucleic Acids Research, 2016, 44, gkw768.	6.5	44
8	Role of Base Excision "Repair―Enzymes in Erasing Epigenetic Marks from DNA. Chemical Reviews, 2016, 116, 12711-12729.	23.0	87
9	Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites. DNA Repair, 2015, 32, 33-42.	1.3	79
10	Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging. Nucleic Acids Research, 2015, 43, 2716-2729.	6.5	36
11	Thymine DNA glycosylase exhibits negligible affinity for nucleobases that it removes from DNA. Nucleic Acids Research, 2015, 43, 9541-9552.	6.5	28
12	E2-mediated Small Ubiquitin-like Modifier (SUMO) Modification of Thymine DNA Glycosylase Is Efficient but Not Selective for the Enzyme-Product Complex. Journal of Biological Chemistry, 2014, 289, 15810-15819.	1.6	17
13	Mechanisms for enzymatic cleavage of the N-glycosidic bond in DNA. Organic and Biomolecular Chemistry, 2014, 12, 8367-8378.	1.5	63
14	Divergent Mechanisms for Enzymatic Excision of 5-Formylcytosine and 5-Carboxylcytosine from DNA. Journal of the American Chemical Society, 2013, 135, 15813-15822.	6.6	69
15	Coordination of MYH DNA glycosylase and APE1 endonuclease activities via physical interactions. DNA Repair, 2013, 12, 1043-1052.	1.3	33
16	Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg ²⁺ cofactor. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2555-2562.	2.5	39
17	Functional Assessment of Population and Tumor-Associated APE1 Protein Variants. PLoS ONE, 2013, 8, e65922.	1.1	30
18	How a mismatch repair enzyme balances the needs for efficient lesion processing and minimal action on undamaged DNA. Cell Cycle, 2012, 11, 3345-3346.	1.3	2

#	Article	IF	CITATIONS
19	Lesion processing by a repair enzyme is severely curtailed by residues needed to prevent aberrant activity on undamaged DNA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8091-8096.	3.3	48
20	Crystal Structure of Human Methyl-Binding Domain IV Glycosylase Bound to Abasic DNA. Journal of Molecular Biology, 2012, 420, 164-175.	2.0	34
21	Thymine DNA Glycosylase Can Rapidly Excise 5-Formylcytosine and 5-Carboxylcytosine. Journal of Biological Chemistry, 2011, 286, 35334-35338.	1.6	704
22	Dependence of substrate binding and catalysis on pH, ionic strength, and temperature for thymine DNA glycosylase: Insights into recognition and processing of G·T mispairs. DNA Repair, 2011, 10, 545-553.	1.3	34
23	Stoichiometry and affinity for thymine DNA glycosylase binding to specific and nonspecific DNA. Nucleic Acids Research, 2011, 39, 2319-2329.	6.5	43
24	Chemical shift assignments for human apurinic/apyrimidinic endonuclease 1. Biomolecular NMR Assignments, 2010, 4, 5-8.	0.4	10
25	Role of Two Strictly Conserved Residues in Nucleotide Flipping and N-Glycosylic Bond Cleavage by Human Thymine DNA Glycosylase. Journal of Biological Chemistry, 2009, 284, 36680-36688.	1.6	52
26	Structural Studies of RNA/DNA Polypurine Tracts. Chemistry and Biology, 2008, 15, 203-204.	6.2	5
27	Crystal structure of human thymine DNA glycosylase bound to DNA elucidates sequence-specific mismatch recognition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8890-8895.	3.3	103
28	Coordinating the Initial Steps of Base Excision Repair. Journal of Biological Chemistry, 2008, 283, 32680-32690.	1.6	86
29	Excision of 5-Halogenated Uracils by Human Thymine DNA Clycosylase. Journal of Biological Chemistry, 2007, 282, 27578-27586.	1.6	87
30	The human checkpoint sensor Rad9–Rad1–Hus1 interacts with and stimulates DNA repair enzyme TDG glycosylase. Nucleic Acids Research, 2007, 35, 6207-6218.	6.5	57
31	Specificity of Human Thymine DNA Glycosylase Depends onN-Glycosidic Bond Stability. Journal of the American Chemical Society, 2006, 128, 12510-12519.	6.6	149
32	Solution Structure and Base Perturbation Studies Reveal a Novel Mode of Alkylated Base Recognition by 3-Methyladenine DNA Glycosylase I. Journal of Biological Chemistry, 2003, 278, 48012-48020.	1.6	33
33	Probing the Limits of Electrostatic Catalysis by Uracil DNA Glycosylase Using Transition State Mimicry and Mutagenesis. Journal of Biological Chemistry, 2002, 277, 15385-15392.	1.6	37
34	3-methyladenine DNA glycosylase I is an unexpected helix-hairpin-helix superfamily member. Nature Structural Biology, 2002, 9, 659-664.	9.7	49
35	Uracil DNA Glycosylase: Insights from a Master Catalyst. Archives of Biochemistry and Biophysics, 2001, 396, 1-9.	1.4	53
36	NMR Evidence for an Unusually Low N1 pKafor Uracil Bound to Uracil DNA Glycosylase:Â Implications for Catalysis. Journal of the American Chemical Society, 2000, 122, 1840-1841.	6.6	74

#	Article	IF	CITATIONS
37	Structural changes in the Câ€ŧerminus of Ca ²⁺ â€bound rat S100B(ββ) upon binding to a peptide derived from the Câ€ŧerminal regulatory domain of p53. Protein Science, 1999, 8, 1743-1751.	3.1	41
38	The use of dipolar couplings for determining the solution structure of rat apo‣100B(ββ). Protein Science, 1999, 8, 800-809.	3.1	77
39	S100B(ββ) inhibits the protein kinase Câ€dependent phosphorylation of a peptide derived from p53 in a Ca ²⁺ â€dependent manner. Protein Science, 1998, 7, 794-798.	3.1	67
40	Oligomerization state of S100B at nanomolar concentration determined by largeâ€zone analytical gel filtration chromatography. Protein Science, 1997, 6, 1577-1582.	3.1	57