
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5964710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, Early Trivial Names of Enzymes, and Nomenclature. DNA and Cell Biology, 1993, 12, 1-51.	0.9	1,596
2	Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chemical Research in Toxicology, 2001, 14, 611-650.	1.7	1,456
3	Cytochrome P450 and Chemical Toxicology. Chemical Research in Toxicology, 2008, 21, 70-83.	1.7	1,292
4	Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chemical Research in Toxicology, 1991, 4, 168-179.	1.7	1,170
5	CYTOCHROME P-450 3A4: Regulation and Role in Drug Metabolism. Annual Review of Pharmacology and Toxicology, 1999, 39, 1-17.	4.2	1,121
6	The P450 Superfamily: Update on New Sequences, Gene Mapping, and Recommended Nomenclature. DNA and Cell Biology, 1991, 10, 1-14.	0.9	1,086
7	Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phenobarbital or .betanaphthoflavone. Biochemistry, 1982, 21, 6019-6030.	1.2	1,064
8	Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chemical Research in Toxicology, 1991, 4, 391-407.	1.7	1,003
9	Mapping the Genetic Architecture of Gene Expression in Human Liver. PLoS Biology, 2008, 6, e107.	2.6	872
10	The P450 Gene Superfamily: Recommended Nomenclature. DNA and Cell Biology, 1987, 6, 1-11.	5.1	790
11	Regulation of rat hepatic cytochrome P-450: age-dependent expression, hormonal imprinting, and xenobiotic inducibility of sex-specific isoenzymes. Biochemistry, 1985, 24, 4409-4417.	1.2	595
12	Chemical mechanisms of catalysis by cytochromes P-450: a unified view. Accounts of Chemical Research, 1984, 17, 9-16.	7.6	522
13	Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450IIE1. Chemical Research in Toxicology, 1990, 3, 566-573.	1.7	516
14	Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS Journal, 2006, 8, E101-E111.	2.2	499
15	Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits, and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochemistry, 1982, 21, 1698-1706.	1.2	427
16	Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chemical Research in Toxicology, 1993, 6, 511-518.	1.7	381
17	Complex reactions catalyzed by cytochrome P450 enzymes. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 314-329.	1.1	368
18	Cooperativity in Oxidations Catalyzed by Cytochrome P450 3A4. Biochemistry, 1997, 36, 370-381.	1.2	357

2

#	Article	IF	CITATIONS
19	Cytochromes P450, Drugs, and Diseases. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2003, 3, 194-204.	3.4	343
20	Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. Journal of Medicinal Chemistry, 1986, 29, 1596-1603.	2.9	327
21	Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chemical Research in Toxicology, 2015, 28, 38-42.	1.7	324
22	Measurement of cytochrome P450 and NADPH–cytochrome P450 reductase. Nature Protocols, 2009, 4, 1245-1251.	5.5	310
23	Enzymatic activation of chemicals to toxic metabolites. CRC Critical Reviews in Toxicology, 1985, 14, 259-307.	4.9	295
24	Elucidating mechanisms of drug-induced toxicity. Nature Reviews Drug Discovery, 2005, 4, 410-420.	21.5	284
25	Drug metabolism by Escherichia coli expressing human cytochromes P450. Nature Biotechnology, 1997, 15, 784-788.	9.4	281
26	Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chemical Research in Toxicology, 1990, 3, 363-371.	1.7	280
27	Oxidation of Indole by Cytochrome P450 Enzymesâ€. Biochemistry, 2000, 39, 13817-13824.	1.2	276
28	Unusual Cytochrome P450 Enzymes and Reactions. Journal of Biological Chemistry, 2013, 288, 17065-17073.	1.6	275
29	Oxidation of dihydropyridine calcium channel blockers and analogs by human liver cytochrome P-450 IIIA4. Journal of Medicinal Chemistry, 1991, 34, 1838-1844.	2.9	260
30	Mechanisms of Drug Toxicity and Relevance to Pharmaceutical Development. Drug Metabolism and Pharmacokinetics, 2011, 26, 3-14.	1.1	257
31	Structural analyses of Candida albicans sterol 14α-demethylase complexed with azole drugs address the molecular basis of azole-mediated inhibition of fungal sterol biosynthesis. Journal of Biological Chemistry, 2017, 292, 6728-6743.	1.6	255
32	Enzymatic Oxidation of Xenobiotic Chemical. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25, 97-153.	2.3	248
33	Recent Structural Insights into Cytochrome P450 Function. Trends in Pharmacological Sciences, 2016, 37, 625-640.	4.0	248
34	Mechanisms of Cytochrome P450-Catalyzed Oxidations. ACS Catalysis, 2018, 8, 10964-10976.	5.5	243
35	Oxidation of trichloroethylene by liver microsomal cytochrome P-450: evidence for chlorine migration in a transition state not involving trichloroethylene oxide. Biochemistry, 1982, 21, 1090-1097.	1.2	241
36	CYTOCHROME P450 ACTIVATION OF ARYLAMINES AND HETEROCYCLIC AMINES. Annual Review of Pharmacology and Toxicology, 2005, 45, 27-49.	4.2	235

#	Article	IF	CITATIONS
37	Elucidation of Distinct Ligand Binding Sites for Cytochrome P450 3A4. Biochemistry, 2000, 39, 5929-5939.	1.2	232
38	Mechanisms of cytochrome Pâ€450 catalysis. FASEB Journal, 1990, 4, 2453-2459.	0.2	231
39	Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Research, 2010, 20, 1020-1036.	2.4	231
40	Contributions of Human Enzymes in Carcinogen Metabolism. Chemical Research in Toxicology, 2012, 25, 1316-1383.	1.7	230
41	Activation of procarcinogens by human cytochrome P450 enzymes. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1998, 400, 201-213.	0.4	229
42	Roles of NADPH-P450 Reductase and Apo- and Holo-Cytochrome b5 on Xenobiotic Oxidations Catalyzed by 12 Recombinant Human Cytochrome P450s Expressed in Membranes of Escherichia coli. Protein Expression and Purification, 2002, 24, 329-337.	0.6	224
43	Metabolism of chemical carcinogens. Carcinogenesis, 2000, 21, 345-351.	1.3	220
44	Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae. Biochemistry, 1990, 29, 11280-11292.	1.2	215
45	Applying Mechanisms of Chemical Toxicity to Predict Drug Safety. Chemical Research in Toxicology, 2007, 20, 344-369.	1.7	214
46	Characterization of human cytochrome P450 enzymes. FASEB Journal, 1992, 6, 745-748.	0.2	212
47	Oxidation of Aflatoxin B1 by Bacterial Recombinant Human Cytochrome P450 Enzymes. Chemical Research in Toxicology, 1995, 8, 218-225.	1.7	208
48	Cytochrome p450 enzymes in the generation of commercial products. Nature Reviews Drug Discovery, 2002, 1, 359-366.	21.5	207
49	Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes. Biochemistry, 1983, 22, 5375-5383.	1.2	203
50	Human Cytochrome P450 Enzymes. , 2005, , 377-530.		203
51	Mechanisms of cytochrome P450 substrate oxidation: MiniReview. Journal of Biochemical and Molecular Toxicology, 2007, 21, 163-168.	1.4	201
52	Oxidation of Benzo[a]pyrene by Recombinant Human Cytochrome P450 Enzymes. Chemical Research in Toxicology, 1995, 8, 136-142.	1.7	199
53	Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Archives of Biochemistry and Biophysics, 2003, 409, 59-71.	1.4	186
54	Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chemical Research in Toxicology, 1992, 5, 470-478.	1.7	185

#	Article	IF	CITATIONS
55	Oxidation-reduction properties of rat liver cytochromes P-450 and NADPH-cytochrome P-450 reductase related to catalysis in reconstituted systems. Biochemistry, 1983, 22, 2811-2820.	1.2	184
56	Cytochrome P450: What Have We Learned and What Are the Future Issues?. Drug Metabolism Reviews, 2004, 36, 159-197.	1.5	183
57	DNA Adduction by the Potent Carcinogen Aflatoxin B1: Mechanistic Studies. Journal of the American Chemical Society, 1994, 116, 1603-1609.	6.6	179
58	Activation of Heterocyclic Aromatic Amines by Rat and Human Liver Microsomes and by Purified Rat and Human Cytochrome P450 1A2â€. Chemical Research in Toxicology, 1998, 11, 925-936.	1.7	174
59	Formation and Cleavage of C–C Bonds by Enzymatic Oxidation–Reduction Reactions. Chemical Reviews, 2018, 118, 6573-6655.	23.0	172
60	Roles of Cytochromes P450 1A2 and 3A4 in the Oxidation of Estradiol and Estrone in Human Liver Microsomes. Chemical Research in Toxicology, 1998, 11, 659-665.	1.7	171
61	Kinetics of Ferric Cytochrome P450 Reduction by NADPHâ^'Cytochrome P450 Reductase:Â Rapid Reduction in the Absence of Substrate and Variations among Cytochrome P450 Systemsâ€. Biochemistry, 1997, 36, 14741-14750.	1.2	169
62	Inhibition of Human Cytochrome P450 1A1-, 1A2-, and 1B1-Mediated Activation of Procarcinogens to Genotoxic Metabolites by Polycyclic Aromatic Hydrocarbons. Chemical Research in Toxicology, 2006, 19, 288-294.	1.7	169
63	Enzymic oxidation of ethyl carbamate to vinyl carbamate and its role as an intermediate in the formation of 1,N6-ethenoadenosine. Chemical Research in Toxicology, 1991, 4, 413-421.	1.7	159
64	Lack of Electron Transfer from Cytochrome b5 in Stimulation of Catalytic Activities of Cytochrome P450 3A4. Journal of Biological Chemistry, 1996, 271, 27438-27444.	1.6	159
65	Evidence for a 1-Electron Oxidation Mechanism in N-Dealkylation of N,N-Dialkylanilines by Cytochrome P450 2B1. Journal of Biological Chemistry, 1996, 271, 27321-27329.	1.6	155
66	Mechanism of cytochrome P-450 inhibition by cyclopropylamines. Journal of the American Chemical Society, 1982, 104, 2050-2052.	6.6	151
67	Metabolism of Benzo[a]pyrene to trans-7,8-Dihydroxy-7,8-dihydrobenzo[a]pyrene by Recombinant Human Cytochrome P450 1B1 and Purified Liver Epoxide Hydrolase. Chemical Research in Toxicology, 1999, 12, 623-629.	1.7	151
68	Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: molecular modeling and inhibition studies. Journal of Medicinal Chemistry, 1993, 36, 1136-1145.	2.9	147
69	Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry, 1978, 17, 3633-3639.	1.2	146
70	The Role of Oxysterols in Human Cancer. Trends in Endocrinology and Metabolism, 2017, 28, 485-496.	3.1	145
71	Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicology and Applied Pharmacology, 2004, 199, 210-219.	1.3	142
72	Binding of Two Flaviolin Substrate Molecules, Oxidative Coupling, and Crystal Structure of Streptomyces coelicolor A3(2) Cytochrome P450 158A2. Journal of Biological Chemistry, 2005, 280, 11599-11607.	1.6	142

#	Article	IF	CITATIONS
73	Expression of cytochrome P-450 enzymes in cultured human hepatocytes. FEBS Journal, 1990, 191, 437-444.	0.2	140
74	DNA Adduct Bypass Polymerization by Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2005, 280, 29750-29764.	1.6	138
75	Roles of Divalent Metal Ions in Oxidations Catalyzed by Recombinant Cytochrome P450 3A4 and Replacement of NADPH-Cytochrome P450 Reductase with Other Flavoproteins, Ferredoxin, and Oxygen Surrogates. Biochemistry, 1995, 34, 8380-8389.	1.2	137
76	Cytochrome P450 enzymes in drug metabolism and chemical toxicology: An introduction. Biochemistry and Molecular Biology Education, 2006, 34, 66-74.	0.5	136
77	Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry, 1989, 28, 2071-2077.	1.2	135
78	Rate-Determining Steps in Phenacetin Oxidations by Human Cytochrome P450 1A2 and Selected Mutants. Biochemistry, 2000, 39, 11319-11329.	1.2	135
79	Cytochrome P450 1B1: a target for inhibition in anticarcinogenesis strategies. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 523-524, 173-182.	0.4	135
80	Cyp27c1 Red-Shifts the Spectral Sensitivity of Photoreceptors by Converting Vitamin A1 into A2. Current Biology, 2015, 25, 3048-3057.	1.8	135
81	Characterization of the enzymic and nonenzymic peroxidative degradation of iron porphyrins and cytochrome P-450 heme. Biochemistry, 1985, 24, 3254-3263.	1.2	134
82	Kinetics and Thermodynamics of Ligand Binding by Cytochrome P450 3A4*. Journal of Biological Chemistry, 2006, 281, 9127-9136.	1.6	132
83	Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Journal of Biological Chemistry, 2020, 295, 833-849.	1.6	132
84	Translesion Synthesis across Bulky N2-Alkyl Guanine DNA Adducts by Human DNA Polymerase κ. Journal of Biological Chemistry, 2006, 281, 21062-21072.	1.6	131
85	Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450. Biochemical and Biophysical Research Communications, 1976, 70, 951-956.	1.0	127
86	Activation of vinyl chloride to covalently bound metabolites: roles of 2-chloroethylene oxide and 2-chloroacetaldehyde. Biochemistry, 1979, 18, 5177-5182.	1.2	126
87	S-[2-(N7-guanyl)ethyl]glutathione, the major DNA adduct formed from 1,2-dibromoethane. Biochemistry, 1986, 25, 2192-2198.	1.2	123
88	Kinetics of Cytochrome P450 2E1-Catalyzed Oxidation of Ethanol to Acetic Acid via Acetaldehyde. Journal of Biological Chemistry, 1999, 274, 23833-23840.	1.6	123
89	Olefin oxidation by cytochrome P-450: evidence for group migration in catalytic intermediates formed with vinylidene chloride and trans-1-phenyl-1-butene. Biochemistry, 1983, 22, 5482-5489.	1.2	122
90	Function of human cytochrome P450s: Characterization of the orphans. Biochemical and Biophysical Research Communications, 2005, 338, 465-469.	1.0	122

#	Article	IF	CITATIONS
91	Translesion Synthesis across O6-Alkylguanine DNA Adducts by Recombinant Human DNA Polymerases*. Journal of Biological Chemistry, 2006, 281, 38244-38256.	1.6	122
92	Cytochromes P450 and drug discovery. Current Opinion in Biotechnology, 2007, 18, 504-512.	3.3	122
93	Fidelity of Nucleotide Insertion at 8-Oxo-7,8-dihydroguanine by Mammalian DNA Polymerase δ. Journal of Biological Chemistry, 2001, 276, 3764-3771.	1.6	121
94	Structure-Functional Characterization of Cytochrome P450 Sterol 14α-Demethylase (CYP51B) from Aspergillus fumigatus and Molecular Basis for the Development of Antifungal Drugs. Journal of Biological Chemistry, 2015, 290, 23916-23934.	1.6	121
95	Efficient and High Fidelity Incorporation of dCTP Opposite 7,8-Dihydro-8-oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2006, 281, 2358-2372.	1.6	118
96	Human Cytochrome P450 Enzymes. , 2015, , 523-785.		117
97	Oxidation of aflatoxins and sterigmatocystin by human liver microsomes: significance of aflatoxin Q1 as a detoxication product of aflatoxin B1. Chemical Research in Toxicology, 1992, 5, 202-210.	1.7	115
98	Structureâ^'Function Relationships of Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 Flavonoid Derivatives. Chemical Research in Toxicology, 2010, 23, 1921-1935.	1.7	115
99	Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology, 1991, 13, 1142-1151.	3.6	112
100	Analysis of Nucleotide Insertion and Extension at 8-Oxo-7,8-dihydroguanine by Replicative T7 Polymerase exo-and Human Immunodeficiency Virus-1 Reverse Transcriptase Using Steady-State and Pre-Steady-State Kineticsâ€. Biochemistry, 1997, 36, 6475-6487.	1.2	112
101	Selection and Characterization of Human Cytochrome P450 1A2 Mutants with Altered Catalytic Propertiesâ€. Biochemistry, 1999, 38, 5283-5289.	1.2	112
102	Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chemical Research in Toxicology, 2017, 30, 2-12.	1.7	106
103	Translesion Synthesis across Abasic Lesions by Human B-Family and Y-Family DNA Polymerases α, δ, Ε, ι, κ, and REV1. Journal of Molecular Biology, 2010, 404, 34-44.	2.0	105
104	Substrate binding to cytochromes P450. Analytical and Bioanalytical Chemistry, 2008, 392, 1019-1030.	1.9	104
105	Update Information on Drug Metabolism Systems— 2009, Part II. Summary of Information on the Effects of Diseases and Environmental Factors on Human Cytochrome P450 (CYP) Enzymes and Transporters. Current Drug Metabolism, 2010, 11, 4-84.	0.7	104
106	Mechanism of cytochrome P-450 catalysis. Mechanism of N-dealkylation and amine oxide deoxygenation. Journal of the American Chemical Society, 1985, 107, 2549-2551.	6.6	103
107	Steady-State and Pre-Steady-State Kinetic Analysis of 8-Oxo-7,8-dihydroguanosine Triphosphate Incorporation and Extension by Replicative and Repair DNA Polymerasesâ€. Biochemistry, 1998, 37, 13300-13312.	1.2	100
108	Interactions of Carcinogen-Bound DNA with Individual DNA Polymerases. Chemical Reviews, 2006, 106, 420-452.	23.0	100

#	Article	IF	CITATIONS
109	Kinetics and Mechanism of Hydrolysis of Aflatoxin B1 exo-8,9-Epoxide and Rearrangement of the Dihydrodiol. Journal of the American Chemical Society, 1996, 118, 8213-8220.	6.6	98
110	Oxidation Kinetics of Ethanol by Human Cytochrome P450 2E1. Journal of Biological Chemistry, 1997, 272, 29643-29651.	1.6	97
111	Recombinant Enzymes Overexpressed in Bacteria Show Broad Catalytic Specificity of Human Cytochrome P450 2W1 and Limited Activity of Human Cytochrome P450 2S1. Molecular Pharmacology, 2006, 69, 2007-2014.	1.0	96
112	Immunoquantification of epoxide hydrolase and cytochrome P-450 isozymes in fetal and adult human liver microsomes. FEBS Journal, 1985, 151, 345-350.	0.2	95
113	Evidence for an episulfonium ion intermediate in the formation of S-[2-(N7-guanyl)ethyl]glutathione in DNA. Journal of the American Chemical Society, 1988, 110, 3284-3291.	6.6	95
114	DIFFERENT IN VITRO METABOLISM OF PACLITAXEL AND DOCETAXEL IN HUMANS, RATS, PIGS, AND MINIPIGS. Drug Metabolism and Disposition, 2004, 32, 666-674.	1.7	95
115	Mitochondria-targeted Cytochrome P450 2E1 Induces Oxidative Damage and Augments Alcohol-mediated Oxidative Stress. Journal of Biological Chemistry, 2010, 285, 24609-24619.	1.6	95
116	Steady-State and Pre-Steady-State Kinetic Analysis of dNTP Insertion Opposite 8-Oxo-7,8-dihydroguanine by Escherichia coli Polymerases I exo- and II exo Biochemistry, 1996, 35, 9840-9849.	1.2	94
117	New Applications of Bacterial Systems to Problems in Toxicology. Critical Reviews in Toxicology, 1996, 26, 551-583.	1.9	94
118	Stimulation of Cytochrome P450 Reactions by Apo-cytochromeb 5. Journal of Biological Chemistry, 2001, 276, 30885-30891.	1.6	94
119	Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme. Biochemistry, 1982, 21, 5769-5776.	1.2	93
120	Conversion of 7-Dehydrocholesterol to 7-Ketocholesterol Is Catalyzed by Human Cytochrome P450 7A1 and Occurs by Direct Oxidation without an Epoxide Intermediate. Journal of Biological Chemistry, 2011, 286, 33021-33028.	1.6	93
121	Roles of the vinyl chloride oxidation products 2-chlorooxirane and 2-chloroacetaldehyde in the in vitro formation of etheno adducts of nucleic acid bases. Chemical Research in Toxicology, 1992, 5, 2-5.	1.7	92
122	1,N 2-Ethenoguanine, a Mutagenic DNA Adduct, Is a Primary Substrate of Escherichia coliMismatch-specific Uracil-DNA Glycosylase and Human Alkylpurine-DNA-N-Glycosylase. Journal of Biological Chemistry, 2002, 277, 26987-26993.	1.6	92
123	The endo-8,9-epoxide of aflatoxin B1: a new metabolite. Chemical Research in Toxicology, 1992, 5, 333-335.	1.7	91
124	Mechanism of the Third Oxidative Step in the Conversion of Androgens to Estrogens by Cytochrome P450 19A1 Steroid Aromatase. Journal of the American Chemical Society, 2014, 136, 15016-15025.	6.6	90
125	Selection of Human Cytochrome P450 1A2 Mutants with Enhanced Catalytic Activity for Heterocyclic Amine N-Hydroxylation. Biochemistry, 2004, 43, 981-988.	1.2	89
126	Adduct Size Limits Efficient and Error-free Bypass Across Bulky N2-Guanine DNA Lesions by Human DNA Polymerase Ε. Journal of Molecular Biology, 2005, 352, 72-90.	2.0	88

#	Article	IF	CITATIONS
127	Kinetic Analysis of Oxidation of Coumarins by Human Cytochrome P450 2A6. Journal of Biological Chemistry, 2005, 280, 12279-12291.	1.6	87
128	Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. Journal of Biological Chemistry, 2020, 295, 833-849.	1.6	87
129	Mechanism-based inactivation of cytochrome P-450 by heteroatom-substituted cyclopropanes and formation of ring-opened products. Journal of the American Chemical Society, 1984, 106, 6446-6447.	6.6	86
130	Role of cytochrome P450IIIA4 in the metabolism of the pyrrolizidine alkaloid senecionine in human liver. Carcinogenesis, 1991, 12, 515-519.	1.3	86
131	Human-liver cytochromes P-450 expressed in yeast as tools for reactive-metabolite formation studies. Oxidative activation of tienilic acid by cytochromes P-450 2C9 and 2C10. FEBS Journal, 1993, 213, 223-232.	0.2	86
132	Cytochrome P450 3A4-catalyzed Testosterone 6Î ² -Hydroxylation Stereochemistry, Kinetic Deuterium Isotope Effects, and Rate-limiting Steps. Journal of Biological Chemistry, 2005, 280, 19496-19506.	1.6	85
133	Orphans in the Human Cytochrome P450 Superfamily: Approaches to Discovering Functions and Relevance in Pharmacology. Pharmacological Reviews, 2011, 63, 684-699.	7.1	85
134	Rate-Limiting Steps in Oxidations Catalyzed by Rabbit Cytochrome P450 1A2. Biochemistry, 2004, 43, 10775-10788.	1.2	84
135	"Phase I and Phase II―Drug Metabolism: Terminology that we Should Phase Out?. Drug Metabolism Reviews, 2005, 37, 575-580.	1.5	83
136	Kinetics, Structure, and Mechanism of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Human DNA Polymerase Î∙. Journal of Biological Chemistry, 2014, 289, 16867-16882.	1.6	81
137	Kinetic Analysis of the Three-step Steroid Aromatase Reaction of Human Cytochrome P450 19A1. Journal of Biological Chemistry, 2010, 285, 17734-17743.	1.6	80
138	Conjugation of Highly Reactive Aflatoxin B1exo-8,9-Epoxide Catalyzed by Rat and Human Glutathione Transferases: Estimation of Kinetic Parametersâ€. Biochemistry, 1997, 36, 3056-3060.	1.2	79
139	Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. Archives of Biochemistry and Biophysics, 2004, 423, 309-316.	1.4	79
140	Sulfolobus solfataricus DNA Polymerase Dpo4 Is Partially Inhibited by "Wobble―Pairing between O6-Methylguanine and Cytosine, but Accurate Bypass Is Preferred. Journal of Biological Chemistry, 2007, 282, 1456-1467.	1.6	79
141	Cytochrome P-450 isozyme/isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfarin. FEBS Journal, 1985, 149, 479-489.	0.2	78
142	Structural and Functional Elucidation of the Mechanism Promoting Error-prone Synthesis by Human DNA Polymerase κ Opposite the 7,8-Dihydro-8-oxo-2′-deoxyguanosine Adduct. Journal of Biological Chemistry, 2009, 284, 22467-22480.	1.6	78
143	Inhibition of oral contraceptive steroid—metabolizing enzymes by steroids and drugs. American Journal of Obstetrics and Gynecology, 1990, 163, 2159-2163.	0.7	77
144	In Vitro techniques for studying drug metabolism. Journal of Pharmacokinetics and Pharmacodynamics, 1996, 24, 521-533.	0.6	76

#	Article	IF	CITATIONS
145	Role of Active Site Water Molecules and Substrate Hydroxyl Groups in Oxygen Activation by Cytochrome P450 158A2. Journal of Biological Chemistry, 2005, 280, 42188-42197.	1.6	75
146	Development of Oxidative Stress by Cytochrome P450 Induction in Rodents Is Selective for Barbiturates and Related to Loss of Pyridine Nucleotide-dependent Protective Systems. Journal of Biological Chemistry, 2008, 283, 17147-17157.	1.6	75
147	Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase. Journal of Biological Chemistry, 2015, 290, 13128-13143.	1.6	74
148	Generation of New Protein Kinase Inhibitors Utilizing Cytochrome P450 Mutant Enzymes for Indigoid Synthesis. Journal of Medicinal Chemistry, 2004, 47, 3236-3241.	2.9	73
149	Electron Transport Pathway for a Streptomyces Cytochrome P450. Journal of Biological Chemistry, 2007, 282, 17486-17500.	1.6	73
150	Three-dimensional Structure of Steroid 21-Hydroxylase (Cytochrome P450 21A2) with Two Substrates Reveals Locations of Disease-associated Variants. Journal of Biological Chemistry, 2012, 287, 10613-10622.	1.6	73
151	Metabolism of heterocyclic aromatic amines by human hepatocytes and cytochrome P4501A2. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2002, 506-507, 187-195.	0.4	72
152	Kinetic Evidence for Inefficient and Error-prone Bypass across Bulky N-Guanine DNA Adducts by Human DNA Polymerase ι*. Journal of Biological Chemistry, 2006, 281, 12315-12324.	1.6	72
153	Multiple Sequential Steps Involved in the Binding of Inhibitors to Cytochrome P450 3A4. Journal of Biological Chemistry, 2007, 282, 6863-6874.	1.6	72
154	Cytochrome P450-Dependent Catabolism of Vitamin K: ω-Hydroxylation Catalyzed by Human CYP4F2 and CYP4F11. Biochemistry, 2013, 52, 8276-8285.	1.2	72
155	Mutagenicity of Site-Specifically Located 1,N2-Ethenoguanine in Chinese Hamster Ovary Cell Chromosomal DNA. Chemical Research in Toxicology, 1999, 12, 501-507.	1.7	71
156	Reaction of Aflatoxin B1Oxidation Products with Lysine. Chemical Research in Toxicology, 2002, 15, 780-792.	1.7	71
157	Functional characterization of four allelic variants of human cytochrome P450 1A2. Archives of Biochemistry and Biophysics, 2004, 422, 23-30.	1.4	71
158	Analysis of Coumarin 7-Hydroxylation Activity of Cytochrome P450 2A6 using Random Mutagenesis. Journal of Biological Chemistry, 2005, 280, 40319-40327.	1.6	71
159	Reduction of cytochrome b5 by NADPH–cytochrome P450 reductase. Archives of Biochemistry and Biophysics, 2005, 440, 204-211.	1.4	71
160	Hydrogen Bonding of 7,8-Dihydro-8-oxodeoxyguanosine with a Charged Residue in the Little Finger Domain Determines Miscoding Events in Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2007, 282, 19831-19843.	1.6	71
161	The <i>CYP3A4</i> intron 6 C>T polymorphism (<i>CYP3A4*22</i>) is associated with reduced CYP3A4 protein level and function in human liver microsomes. Journal of Toxicological Sciences, 2013, 38, 349-354.	0.7	70
162	Misincorporation of Nucleotides opposite Five-Membered Exocyclic Ring Guanine Derivatives byEscherichia coliPolymerases in Vitro and in Vivo:Â 1,N2-Ethenoguanine, 5,6,7,9-Tetrahydro-9-oxoimidazo[1,2-a]purine, and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purineâ€. Biochemistry, 1998, 37, 5184-5193.	1.2	69

#	Article	IF	CITATIONS
163	Diversity in the Oxidation of Substrates by Cytochrome P450 2D6: Lack of an Obligatory Role of Aspartate 301â^'Substrate Electrostatic Bondingâ€. Biochemistry, 2002, 41, 11025-11034.	1.2	69
164	Cytochrome P450 research and The Journal of Biological Chemistry. Journal of Biological Chemistry, 2019, 294, 1671-1680.	1.6	69
165	Comparison of the DNA-alkylating properties and mutagenic responses of a series of S-(2-haloethyl)-substituted cysteine and glutathione derivatives. Biochemistry, 1990, 29, 10342-10350.	1.2	68
166	Membrane Insertion of Cytochrome P450 1A2 Promoted by Anionic Phospholipidsâ€. Biochemistry, 1998, 37, 12860-12866.	1.2	68
167	Role of Clutamic Acid 216 in Cytochrome P450 2D6 Substrate Binding and Catalysis. Biochemistry, 2003, 42, 1245-1253.	1.2	68
168	A history of the roles of cytochrome P450 enzymes in the toxicity of drugs. Toxicological Research, 2021, 37, 1-23.	1.1	68
169	Rate-Limiting Steps in Cytochrome P450 Catalysis. Biological Chemistry, 2002, 383, 1553-64.	1.2	67
170	Metabolism of 2-Amino-3,8-dimethylimidazo[4,5-f]- quinoxaline in Human Hepatocytes: 2-Amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic Acid Is a Major Detoxication Pathway Catalyzed by Cytochrome P450 1A2. Chemical Research in Toxicology, 2001, 14, 211-221.	1.7	66
171	Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b5 enzymes. Archives of Biochemistry and Biophysics, 2005, 435, 207-216.	1.4	66
172	Expansion of Substrate Specificity of Cytochrome P450 2A6 by Random and Site-directed Mutagenesis*. Journal of Biological Chemistry, 2005, 280, 41090-41100.	1.6	65
173	Dansylation of Unactivated Alcohols for Improved Mass Spectral Sensitivity and Application to Analysis of Cytochrome P450 Oxidation Products in Tissue Extracts. Analytical Chemistry, 2010, 82, 7706-7712.	3.2	65
174	Bioactivation of Fluorinated 2-Aryl-benzothiazole Antitumor Molecules by Human Cytochrome P450s 1A1 and 2W1 and Deactivation by Cytochrome P450 2S1. Chemical Research in Toxicology, 2012, 25, 1740-1751.	1.7	65
175	The relationships between cytochromes P450 and H 2 O 2 : Production, reaction, and inhibition. Journal of Inorganic Biochemistry, 2018, 186, 228-234.	1.5	65
176	Enhancement of Bacterial Mutagenicity of Bifunctional Alkylating Agents by Expression of Mammalian Glutathione S-Transferase. Chemical Research in Toxicology, 1995, 8, 465-472.	1.7	64
177	Binding and Oxidation of Alkyl 4-Nitrophenyl Ethers by Rabbit Cytochrome P450 1A2:Â Evidence for Two Binding Sitesâ€. Biochemistry, 2001, 40, 7262-7272.	1.2	64
178	Reduction of Aflatoxin B1 Dialdehyde by Rat and Human Aldo-keto Reductases. Chemical Research in Toxicology, 2001, 14, 727-737.	1.7	64
179	O6-Alkylguanine-DNA Alkyltransferase:  Low pKa and High Reactivity of Cysteine 145. Biochemistry, 2003, 42, 10965-10970.	1.2	64
180	Principles of covalent binding of reactive metabolites and examples of activation of bis-electrophiles by conjugation. Archives of Biochemistry and Biophysics, 2005, 433, 369-378.	1.4	63

#	Article	IF	CITATIONS
181	Metabolism of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine by Mitochondrion-targeted Cytochrome P450 2D6. Journal of Biological Chemistry, 2013, 288, 4436-4451.	1.6	63
182	Kinetic Analysis of Steps in the Repair of Damaged DNA by Human O6-Alkylguanine-DNA Alkyltransferase. Journal of Biological Chemistry, 2005, 280, 30873-30881.	1.6	62
183	A malleable catalyst dominates the metabolism of drugs. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13565-13566.	3.3	62
184	Cytochrome P450 2E1 and its roles in disease. Chemico-Biological Interactions, 2020, 322, 109056.	1.7	62
185	Detection of free radicals produced from the reaction of cytochrome P-450 with linoleic acid hydroperoxide. Biochemical Journal, 1997, 328, 565-571.	1.7	61
186	Misincorporation of dNTPs Opposite 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in Oligonucleotides byEscherichia coliPolymerases I exo-and II exo-, T7 Polymerase exo-, Human Immunodeficiency Virus-1 Reverse Transcriptase, and Rat Polymerase βâ€. Biochemistry, 1997, 36, 6069-6079.	1.2	61
187	Versatility of Y-family Sulfolobus solfataricus DNA Polymerase Dpo4 in Translesion Synthesis Past Bulky N2-Alkylguanine Adducts. Journal of Biological Chemistry, 2009, 284, 3563-3576.	1.6	61
188	Cooperativity in Oxidation Reactions Catalyzed by Cytochrome P450 1A2. Journal of Biological Chemistry, 2008, 283, 7293-7308.	1.6	59
189	Kinetic Analysis of Translesion Synthesis Opposite Bulky N2- and O6-Alkylguanine DNA Adducts by Human DNA Polymerase REV1. Journal of Biological Chemistry, 2008, 283, 23645-23655.	1.6	59
190	Formation of 1,N2- and N2,3-ethenoguanine from 2-halooxiranes: Isotopic labeling studies and isolation of a hemiaminal derivative of N2-(2-oxoethyl)guanine. Chemical Research in Toxicology, 1993, 6, 635-648.	1.7	58
191	Molecular Basis of Selectivity of Nucleoside Triphosphate Incorporation Opposite O6-Benzylguanine by Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2007, 282, 13573-13584.	1.6	58
192	Different Mechanisms for Inhibition of Human Cytochromes P450 1A1, 1A2, and 1B1 by Polycyclic Aromatic Inhibitors. Chemical Research in Toxicology, 2007, 20, 489-496.	1.7	58
193	Oxidation of Methyl and Ethyl Nitrosamines by Cytochrome P450 2E1 and 2B1. Biochemistry, 2012, 51, 9995-10007.	1.2	58
194	Aflatoxin B1 8,9-Epoxide Hydrolysis in the Presence of Rat and Human Epoxide Hydrolase. Chemical Research in Toxicology, 1997, 10, 672-676.	1.7	57
195	Translesion Synthesis Across 1,N2-Ethenoguanine by Human DNA Polymerases. Chemical Research in Toxicology, 2006, 19, 879-886.	1.7	56
196	Hydrodynamic characterization of highly purified and functionally active liver microsomal cytochrome P-450. Biochemistry, 1979, 18, 5442-5449.	1.2	55
197	Decreased intestinal CYP3A in celiac disease: Reversal after successful gluten-free diet: A potential source of interindividual variability in first-pass drug metabolism*. Clinical Pharmacology and Therapeutics, 1996, 59, 41-46.	2.3	55
198	Enhancement of 7-methoxyresorufin O-demethylation activity of human cytochrome P450 1A2 by molecular breeding. Archives of Biochemistry and Biophysics, 2004, 432, 102-108.	1.4	55

#	Article	IF	CITATIONS
199	Analysis of 1,N2-Ethenoguanine and 5,6,7,9-Tetrahydro-7-hydroxy-9-oxoimidazo[1,2-a]purine in DNA Treated with 2-Chlorooxirane by High Performance Liquid Chromatography/Electrospray Mass Spectrometry and Comparison of Amounts to Other DNA Adducts. Chemical Research in Toxicology, 1997, 10, 242-247.	1.7	54
200	Oxidation of Methoxyphenethylamines by Cytochrome P450 2D6. Journal of Biological Chemistry, 2002, 277, 33711-33719.	1.6	54
201	Mammalian Cytochrome P450 Enzymes Catalyze the Phenol-coupling Step in Endogenous Morphine Biosynthesis. Journal of Biological Chemistry, 2009, 284, 24425-24431.	1.6	54
202	Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2. Journal of Biological Chemistry, 2015, 290, 3248-3268.	1.6	54
203	Mechanism of 17α,20-Lyase and New Hydroxylation Reactions of Human Cytochrome P450 17A1. Journal of Biological Chemistry, 2016, 291, 17143-17164.	1.6	54
204	Assignment of the human cytochrome P-450 nifedipine oxidase gene (CYP3A4) to chromosome 7 at band q22.1 by fluorescencein situ hybridization. Japanese Journal of Human Genetics, 1992, 37, 133-138.	0.8	53
205	Evidence for a Role of a Perferryl-Oxygen Complex, FeO ³⁺ , in the <i>N</i> -Oxygenation of Amines by Cytochrome P450 Enzymes. Molecular Pharmacology, 1997, 51, 147-151.	1.0	53
206	Metabolic Activation of Polycyclic Aromatic Hydrocarbons and Aryl and Heterocyclic Amines by Human Cytochromes P450 2A13 and 2A6. Chemical Research in Toxicology, 2013, 26, 529-537.	1.7	52
207	Kinetic deuterium isotope effects in cytochrome P450 oxidation reactions. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 428-431.	0.5	52
208	Characterization of S-[2-(N1-adenyl)ethyl]glutathione as an adduct formed in RNA and DNA from 1,2-dibromoethane. Chemical Research in Toxicology, 1990, 3, 587-594.	1.7	51
209	Effect of the O6 Substituent on Misincorporation Kinetics Catalyzed by DNA Polymerases atO6-Methylguanine andO6-Benzylguanineâ€. Biochemistry, 2002, 41, 1027-1038.	1.2	51
210	Multi-step oxidations catalyzed by cytochrome P450 enzymes: Processive vs. distributive kinetics and the issue of carbonyl oxidation in chemical mechanisms. Archives of Biochemistry and Biophysics, 2011, 507, 126-134.	1.4	51
211	Roles of the Four DNA Polymerases of the Crenarchaeon Sulfolobus solfataricus and Accessory Proteins in DNA Replication. Journal of Biological Chemistry, 2011, 286, 31180-31193.	1.6	51
212	Oxidation of 1,2,4,5-Tetramethoxybenzene to a Cation Radical by Cytochrome P450. Journal of the American Chemical Society, 2000, 122, 8099-8100.	6.6	50
213	Testosterone 1β-hydroxylation by human cytochrome P450 3A4. FEBS Journal, 2004, 271, 3962-3969.	0.2	50
214	Oxidation of N-Nitrosoalkylamines by Human Cytochrome P450 2A6. Journal of Biological Chemistry, 2010, 285, 8031-8044.	1.6	50
215	Analysis of the Effect of Bulk at N2-Alkylguanine DNA Adducts on Catalytic Efficiency and Fidelity of the Processive DNA Polymerases Bacteriophage T7 Exonuclease- and HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2004, 279, 19217-19229.	1.6	49
216	Characterization of Orphan Human Cytochromes P450. Drug Metabolism Reviews, 2007, 39, 627-637.	1.5	49

#	Article	IF	CITATIONS
217	In Vivo Oxidative Damage in Rats Is Associated with Barbiturate Response but Not Other Cytochrome P450 Inducers. Molecular Pharmacology, 2007, 72, 1419-1424.	1.0	49
218	Structural Basis for Proficient Incorporation of dTTP Opposite O6-Methylguanine by Human DNA Polymerase Î ¹ . Journal of Biological Chemistry, 2010, 285, 40666-40672.	1.6	49
219	Oxidation of 7-dehydrocholesterol and desmosterol by human cytochrome P450 46A1. Journal of Lipid Research, 2014, 55, 1933-1943.	2.0	49
220	Roles of Cytochrome P450 in Metabolism of Ethanol and Carcinogens. Advances in Experimental Medicine and Biology, 2018, 1032, 15-35.	0.8	49
221	Repair of <i>O</i> ⁶ -G-Alkyl- <i>O</i> ⁶ -G Interstrand Cross-Links by Human <i>O</i> ⁶ -Alkylguanine-DNA Alkyltransferase. Biochemistry, 2008, 47, 10892-10903.	1.2	48
222	Update Information on Drug Metabolism Systems— 2009, Part I. Current Drug Metabolism, 2010, 11, 1-3.	0.7	48
223	On the formation of 7-ketocholesterol from 7-dehydrocholesterol in patients with CTX and SLO. Journal of Lipid Research, 2014, 55, 1165-1172.	2.0	47
224	Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design. Journal of Lipid Research, 2016, 57, 1552-1563.	2.0	47
225	Human Family 1–4 cytochrome P450 enzymes involved in the metabolic activation of xenobiotic and physiological chemicals: an update. Archives of Toxicology, 2021, 95, 395-472.	1.9	47
226	Explanation of Pre-Steady-State Kinetics and Decreased Burst Amplitude of HIV-1 Reverse Transcriptase at Sites of Modified DNA Bases with an Additional, Nonproductive Enzymeâ^'DNAâ^'Nucleotide Complexâ€. Biochemistry, 1999, 38, 4818-4825.	1.2	46
227	Misincorporation and Stalling atO6-Methylguanine andO6-Benzylguanine:Â Evidence for Inactive Polymerase Complexesâ€. Biochemistry, 2002, 41, 1039-1050.	1.2	46
228	Human Liver Microsomal Cytochrome P450 3A Enzymes Involved in Thalidomide 5-Hydroxylation and Formation of a Glutathione Conjugate. Chemical Research in Toxicology, 2010, 23, 1018-1024.	1.7	46
229	Paradoxical Enhancement of the Toxicity of 1,2-Dibromoethane byO 6-Alkylguanine-DNA Alkyltransferase. Journal of Biological Chemistry, 2002, 277, 37920-37928.	1.6	45
230	Structural and Kinetic Analysis of Nucleoside Triphosphate Incorporation Opposite an Abasic Site by Human Translesion DNA Polymerase Î. Journal of Biological Chemistry, 2015, 290, 8028-8038.	1.6	45
231	Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. Mutation Research - Reviews in Mutation Research, 2016, 768, 53-67.	2.4	45
232	Cytochrome P450: advances and prospects. FASEB Journal, 1992, 6, 667-668.	0.2	44
233	Activation ofbis-Electrophiles to Mutagenic Conjugates by HumanO6-Alkylguanine-DNA Alkyltransferase. Chemical Research in Toxicology, 2004, 17, 972-982.	1.7	44
234	Kinetic Deuterium Isotope Effects in Cytochrome P450 Reactions. Methods in Enzymology, 2017, 596, 217-238.	0.4	44

#	Article	IF	CITATIONS
235	Drug Interactions of Thalidomide with Midazolam and Cyclosporine A: Heterotropic Cooperativity of Human Cytochrome P450 3A5. Drug Metabolism and Disposition, 2009, 37, 18-23.	1.7	43
236	<i>In Vivo</i> Formation of Dihydroxylated and Glutathione Conjugate Metabolites Derived from Thalidomide and 5-Hydroxythalidomide in Humanized TK-NOG Mice. Chemical Research in Toxicology, 2012, 25, 274-276.	1.7	43
237	Cytochrome P450 7A1 Cholesterol 7α-Hydroxylation. Journal of Biological Chemistry, 2011, 286, 4632-4643.	1.6	42
238	Human Cytochrome P450 2E1 Mutations That Alter Mitochondrial Targeting Efficiency and Susceptibility to Ethanol-induced Toxicity in Cellular Models. Journal of Biological Chemistry, 2013, 288, 12627-12644.	1.6	42
239	Oxidations ofp-Alkoxyacylanilides Catalyzed by Human Cytochrome P450 1A2: Structureâ^'Activity Relationships and Simulation of Rate Constants of Individual Steps in Catalysisâ€. Biochemistry, 2001, 40, 4521-4530.	1.2	41
240	ExploitingStreptomyces coelicolorA3(2) P450s as a model for application in drug discovery. Expert Opinion on Drug Metabolism and Toxicology, 2006, 2, 27-40.	1.5	41
241	Formation of the indigo precursor indican in genetically engineered tobacco plants and cell cultures. Plant Biotechnology Journal, 2007, 5, 185-191.	4.1	41
242	Human cytochrome P450 enzymes bind drugs and other substrates mainly through conformational-selection modes. Journal of Biological Chemistry, 2019, 294, 10928-10941.	1.6	41
243	KINETICS OF HYDROLYSIS AND REACTION OF AFLATOXIN B1EXO-8,9-EPOXIDE AND RELEVANCE TO TOXICITY AND DETOXICATION*,â€. Drug Metabolism Reviews, 1999, 31, 141-158.	1.5	40
244	Mechanism of Aqueous Decomposition of Trichloroethylene Oxide. Journal of the American Chemical Society, 1999, 121, 11656-11663.	6.6	40
245	Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase Ε. Journal of Biological Chemistry, 2016, 291, 3747-3756.	1.6	40
246	Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1. Journal of Biological Chemistry, 2017, 292, 13168-13185.	1.6	40
247	Random Mutagenesis by Whole-Plasmid PCR Amplification. BioTechniques, 1998, 24, 428-431.	0.8	39
248	Diversity in Mechanisms of Substrate Oxidation by Cytochrome P450 2D6. Journal of Biological Chemistry, 2001, 276, 39553-39561.	1.6	39
249	Characterization of a Mutagenic DNA Adduct Formed from 1,2-Dibromoethane by O6-Alkylguanine-DNA Alkyltransferase. Journal of Biological Chemistry, 2004, 279, 4250-4259.	1.6	39
250	Biochemical Basis of Genotoxicity of Heterocyclic Arylamine Food Mutagens. Journal of Biological Chemistry, 2006, 281, 25297-25306.	1.6	39
251	Introduction: Human Metabolites in Safety Testing (MIST) Issue. Chemical Research in Toxicology, 2009, 22, 237-238.	1.7	39
252	Elucidation of Functions of Human Cytochrome P450 Enzymes: Identification of Endogenous Substrates in Tissue Extracts Using Metabolomic and Isotopic Labeling Approaches. Analytical Chemistry, 2009, 81, 3071-3078.	3.2	39

#	Article	IF	CITATIONS
253	Reverse Type I Binding Spectra of Human Cytochrome P450 1B1 Induced by Flavonoid, Stilbene, Pyrene, Naphthalene, Phenanthrene, and Biphenyl Derivatives That Inhibit Catalytic Activity: A Structureâ ''Function Relationship Study. Chemical Research in Toxicology, 2009, 22, 1325-1333.	1.7	39
254	Identification of genetic variants of human cytochrome P450 2D6 with impaired mitochondrial targeting. Molecular Genetics and Metabolism, 2010, 99, 90-97.	0.5	39
255	Next-generation sequencing reveals the biological significance of the <i>N</i> Â2,3-ethenoguanine lesion <i>in vivo</i> . Nucleic Acids Research, 2015, 43, 5489-5500.	6.5	39
256	N-HYDROXYARYLAMINES. Drug Metabolism Reviews, 2002, 34, 607-623.	1.5	38
257	Summary of Information on the Effects of Ionizing and Non-ionizing Radiation on Cytochrome P450 and Other Drug Metabolizing Enzymes and Transporters. Current Drug Metabolism, 2012, 13, 787-814.	0.7	38
258	Characterizing Proteins of Unknown Function: Orphan Cytochrome P450 Enzymes as a Paradigm. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2010, 10, 153-163.	3.4	38
259	Formation of etheno adducts of adenosine and cytidine from 1-halooxiranes. Evidence for a mechanism involving initial reaction with the endocyclic nitrogen atoms. Journal of the American Chemical Society, 1992, 114, 1074-1080.	6.6	37
260	Identification of RetainedN-Formylmethionine in Bacterial Recombinant Mammalian Cytochrome P450 Proteins with the N-Terminal Sequence MALLLAVFL:Â Roles of Residues 3â^'5 in Retention and Membrane Topologyâ€. Biochemistry, 1996, 35, 10031-10040.	1.2	37
261	Regioselective Differences in C8- and N-Oxidation of 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline by Human and Rat Liver Microsomes and Cytochromes P450 1A2. Chemical Research in Toxicology, 2001, 14, 901-911.	1.7	37
262	Biosynthesis of New Indigoid Inhibitors of Protein Kinases Using Recombinant Cytochrome P450 2A6. Chemistry and Biodiversity, 2005, 2, 51-65.	1.0	37
263	Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. Journal of Lipid Research, 2012, 53, 1610-1617.	2.0	37
264	Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase Î∙ in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2′-deoxyguanosine. Journal of Biological Chemistry, 2015, 290, 15921-15933.	1.6	37
265	Enzymatic monooxygenation of halogen atoms: cytochrome P-450 catalyzed oxidation of iodobenzene by iodosobenzene. Journal of the American Chemical Society, 1980, 102, 7615-7616.	6.6	36
266	Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes. Carcinogenesis, 1993, 14, 1271-1278.	1.3	36
267	Kinetic Analysis of Correct Nucleotide Insertion by a Y-family DNA Polymerase Reveals Conformational Changes Both Prior to and following Phosphodiester Bond Formation as Detected by Tryptophan Fluorescence. Journal of Biological Chemistry, 2008, 283, 36711-36723.	1.6	36
268	Cyclization of a Cellular Dipentaenone by <i>Streptomyces coelicolor</i> Cytochrome P450 154A1 without Oxidation/Reduction. Journal of the American Chemical Society, 2010, 132, 15173-15175.	6.6	36
269	Human cytochrome P450 enzymes 5–51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition – toxic effects and benefits. Drug Metabolism Reviews, 2018, 50, 256-342.	1.5	36
270	Human DNA polymerase η has reverse transcriptase activity in cellular environments. Journal of Biological Chemistry, 2019, 294, 6073-6081.	1.6	36

#	Article	IF	CITATIONS
271	Spectroscopic and Thermodynamic Characterization of the Interaction of N7-Guanyl Thioether Derivatives of d(TGCTG*CAAG) with Potential Complements. Biochemistry, 1994, 33, 8662-8672.	1.2	35
272	Oxidation of 9-Alkylanthracenes by Cytochrome P450 2B1, Horseradish Peroxidase, and Iron Tetraphenylporphine/Iodosylbenzene Systems:  Anaerobic and Aerobic Mechanisms. Biochemistry, 1996, 35, 2512-2520.	1.2	35
273	Formation and Reactions of N7-Aminoguanosine and Derivatives. Chemical Research in Toxicology, 1999, 12, 906-916.	1.7	35
274	Update Information on Human P450s. Drug Metabolism Reviews, 2002, 34, 7-15.	1.5	35
275	Inherent Stereospecificity in the Reaction of Aflatoxin B ₁ 8,9-Epoxide with Deoxyguanosine and Efficiency of DNA Catalysis. Chemical Research in Toxicology, 2009, 22, 913-917.	1.7	35
276	Structural Identification of Diindole Agonists of the Aryl Hydrocarbon Receptor Derived from Degradation of Indole-3-pyruvic Acid. Chemical Research in Toxicology, 2009, 22, 1905-1912.	1.7	35
277	Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450. European Journal of Pharmaceutical Sciences, 2015, 73, 49-56.	1.9	35
278	Combining Chimeric Mice with Humanized Liver, Mass Spectrometry, and Physiologically-Based Pharmacokinetic Modeling in Toxicology. Chemical Research in Toxicology, 2016, 29, 1903-1911.	1.7	35
279	In vitro cytochrome P450 46A1 (CYP46A1) activation by neuroactive compounds. Journal of Biological Chemistry, 2017, 292, 12934-12946.	1.6	35
280	Sterol 14α-Demethylase Structure-Based Design of VNI Derivatives To Target Fungal Infections: Synthesis, Biological Evaluation, and Crystallographic Analysis. Journal of Medicinal Chemistry, 2018, 61, 5679-5691.	2.9	35
281	Interaction of Polycyclic Aromatic Hydrocarbons with Human Cytochrome P450 1B1 in Inhibiting Catalytic Activity. Chemical Research in Toxicology, 2008, 21, 2313-2323.	1.7	34
282	Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4: GUANINE N2,N2-DIMETHYL SUBSTITUTION PRODUCES INACTIVE AND MISCODING POLYMERASE COMPLEXES. Journal of Biological Chemistry, 2009, 284, 17687-17699.	1.6	34
283	Updated procedure for the safety evaluation of natural flavor complexes used as ingredients in food. Food and Chemical Toxicology, 2018, 113, 171-178.	1.8	34
284	FEMA GRAS assessment of natural flavor complexes: Citrus-derived flavoring ingredients. Food and Chemical Toxicology, 2019, 124, 192-218.	1.8	34
285	Pre-Steady-State Kinetics of Nucleotide Insertion following 8-Oxo-7,8-dihydroguanine Base Pair Mismatches by Bacteriophage T7 DNA Polymerase exo-â€. Biochemistry, 1998, 37, 3567-3574.	1.2	33
286	Formation and Reduction of Aryl and Heterocyclic Nitroso Compounds and Significance in the Flux of Hydroxylamines. Chemical Research in Toxicology, 2004, 17, 529-536.	1.7	33
287	Heterologous expression, purification, and properties of human cytochrome P450 27C1. Archives of Biochemistry and Biophysics, 2006, 445, 138-146.	1.4	33
288	mRNA Distribution and Heterologous Expression of Orphan Cytochrome P450 20A1. Drug Metabolism and Disposition, 2008, 36, 1930-1937.	1.7	33

#	Article	IF	CITATIONS
289	Effect of N2-Guanyl Modifications on Early Steps in Catalysis of Polymerization by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239W. Journal of Molecular Biology, 2010, 395, 1007-1018.	2.0	33
290	Reduction of Aromatic and Heterocyclic Aromatic <i>N</i> -Hydroxylamines by Human Cytochrome P450 2S1. Chemical Research in Toxicology, 2013, 26, 993-1004.	1.7	33
291	Human Cytochrome P450 Oxidation of 5-Hydroxythalidomide and Pomalidomide, an Amino Analogue of Thalidomide. Chemical Research in Toxicology, 2014, 27, 147-156.	1.7	33
292	Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins. DNA Repair, 2015, 30, 1-10.	1.3	33
293	Bypass of DNA-Protein Cross-links Conjugated to the 7-Deazaguanine Position of DNA by Translesion Synthesis Polymerases. Journal of Biological Chemistry, 2016, 291, 23589-23603.	1.6	33
294	Pharmacogenomics of cytochrome P450 and other enzymes involved in biotransformation of xenobiotics. Drug Development Research, 2000, 49, 4-16.	1.4	32
295	Conjugation of Haloalkanes by Bacterial and Mammalian Glutathione Transferases:  Mono- and Vicinal Dihaloethanes. Chemical Research in Toxicology, 2001, 14, 1107-1117.	1.7	32
296	Differential DNA Recognition and Cleavage byEcoRI Dependent on the Dynamic Equilibrium between the Two Forms of the Malondialdehydeâ ''Deoxyguanosine Adductâ€. Biochemistry, 2005, 44, 5024-5033.	1.2	32
297	Protection Against Aflatoxin B ₁ -Induced Cytotoxicity by Expression of the Cloned Aflatoxin B ₁ -Aldehyde Reductases Rat AKR7A1 and Human AKR7A3. Chemical Research in Toxicology, 2008, 21, 1134-1142.	1.7	32
298	Structure-Function Relationships in Miscoding by Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2009, 284, 17687-17699.	1.6	32
299	<i>In Vivo</i> Formation of a Glutathione Conjugate Derived from Thalidomide in Humanized uPA-NOG Mice. Chemical Research in Toxicology, 2011, 24, 287-289.	1.7	32
300	Basis of Miscoding of the DNA Adduct N2,3-Ethenoguanine by Human Y-family DNA Polymerases. Journal of Biological Chemistry, 2012, 287, 35516-35526.	1.6	32
301	Functional analysis of human cytochrome P450 21A2 variants involved in congenital adrenal hyperplasia. Journal of Biological Chemistry, 2017, 292, 10767-10778.	1.6	32
302	Introduction to Metals in Biology 2018: Copper homeostasis and utilization in redox enzymes. Journal of Biological Chemistry, 2018, 293, 4603-4605.	1.6	32
303	Conformational selection dominates binding of steroids to human cytochrome P450 17A1. Journal of Biological Chemistry, 2019, 294, 10028-10041.	1.6	32
304	The safety evaluation of food flavoring substances: the role of genotoxicity studies. Critical Reviews in Toxicology, 2020, 50, 1-27.	1.9	32
305	Composition of cytochrome P-450 isozymes from hepatic microsomes of C57BL/6 and DBA/2 mice assessed by warfarin metabolism, immunoinhibition, and immunoelectrophoresis with anti-(rat) Tj ETQq1 1 0.78	343 0 ,2rgB	T /Omerlock 1
306	Acylation of Protein Lysines by Trichloroethylene Oxide. Chemical Research in Toxicology, 2000, 13, 327-335.	1.7	31

#	Article	IF	CITATIONS
307	Reactions of Glyceraldehyde 3-Phosphate Dehydrogenase Sulfhydryl Groups with Bis-Electrophiles Produce DNA–Protein Cross-Links but Not Mutations. Chemical Research in Toxicology, 2008, 21, 453-458.	1.7	31
308	Steric and Electrostatic Effects at the C2 Atom Substituent Influence Replication and Miscoding of the DNA Deamination Product Deoxyxanthosine and Analogs by DNA Polymerases. Journal of Molecular Biology, 2009, 392, 251-269.	2.0	31
309	Human cytochrome P450 4F11: Heterologous expression in bacteria, purification, and characterization of catalytic function. Archives of Biochemistry and Biophysics, 2010, 494, 86-93.	1.4	31
310	Oxidation of Dihydrotestosterone by Human Cytochromes P450 19A1 and 3A4. Journal of Biological Chemistry, 2012, 287, 29554-29567.	1.6	31
311	Binding of Diverse Environmental Chemicals with Human Cytochromes P450 2A13, 2A6, and 1B1 and Enzyme Inhibition. Chemical Research in Toxicology, 2013, 26, 517-528.	1.7	31
312	Cytochrome P450 metabolism of the post-lanosterol intermediates explains enigmas of cholesterol synthesis. Scientific Reports, 2016, 6, 28462.	1.6	31
313	The Dihydroxy Metabolite of the Teratogen Thalidomide Causes Oxidative DNA Damage. Chemical Research in Toxicology, 2017, 30, 1622-1628.	1.7	31
314	Activation of Dihaloalkanes by Thiol-dependent Mechanisms. BMB Reports, 2003, 36, 20-27.	1.1	31
315	Direct Detection and Mapping of Sites of Base Modification in DNA Fragments by Tandem Mass Spectrometry. Angewandte Chemie - International Edition, 2008, 47, 381-384.	7.2	30
316	Structural and Functional Analysis of <i>Sulfolobus solfataricus</i> Y-Family DNA Polymerase Dpo4-Catalyzed Bypass of the Malondialdehydeâ^Deoxyguanosine Adduct [,] . Biochemistry, 2009, 48, 7079-7088.	1.2	30
317	Cytochromes P450 Catalyze the Reduction of $\hat{I}\pm,\hat{I}^2$ -Unsaturated Aldehydes. Chemical Research in Toxicology, 2011, 24, 1223-1230.	1.7	30
318	Replication of <i>N</i> ² ,3â€Ethenoguanine by DNA Polymerases. Angewandte Chemie - International Edition, 2012, 51, 5466-5469.	7.2	30
319	Oxidation of Endogenous N-Arachidonoylserotonin by Human Cytochrome P450 2U1. Journal of Biological Chemistry, 2014, 289, 10476-10487.	1.6	30
320	Human cytochrome P450 27C1 catalyzes 3,4â€desaturation of retinoids. FEBS Letters, 2016, 590, 1304-1312.	1.3	30
321	Chromatographic assays of drug oxidation by human cytochrome P450 3A4. Nature Protocols, 2009, 4, 1252-1257.	5.5	29
322	Cytochrome P450 3A Enzymes Catalyze the O6-Demethylation of Thebaine, a Key Step in Endogenous Mammalian Morphine Biosynthesis. Journal of Biological Chemistry, 2015, 290, 20200-20210.	1.6	29
323	Structure of formamidopyrimidine adducts as determined by NMR using specifically nitrogen-15-labeled guanosine. Chemical Research in Toxicology, 1991, 4, 632-636.	1.7	28
324	Exploiting the Versatility of Human Cytochrome P450 Enzymes: The Promise of Blue Roses From Biotechnology. IUBMB Life, 2001, 52, 271-277.	1.5	28

#	Article	IF	CITATIONS
325	Safety Assessment of Stable Drug Metabolites. Chemical Research in Toxicology, 2006, 19, 1559-1560.	1.7	28
326	Heterologous expression and characterization of wild-type human cytochrome P450 1A2 without conventional N-terminal modification in Escherichia coli. Protein Expression and Purification, 2008, 57, 188-200.	0.6	28
327	Human liver mitochondrial cytochrome P450 2D6 – individual variations and implications in drug metabolism. FEBS Journal, 2009, 276, 3440-3453.	2.2	28
328	Kinetic Analysis of Base-Pairing Preference for Nucleotide Incorporation Opposite Template Pyrimidines by Human DNA Polymerase Î ¹ . Journal of Molecular Biology, 2009, 389, 264-274.	2.0	28
329	Inhibition of Human Cytochrome P450 3A4 by Cholesterol. Journal of Biological Chemistry, 2011, 286, 18426-18433.	1.6	28
330	Kinetic Analysis of Lauric Acid Hydroxylation by Human Cytochrome P450 4A11. Biochemistry, 2014, 53, 6161-6172.	1.2	28
331	Thalidomide Increases Human Hepatic Cytochrome P450 3A Enzymes by Direct Activation of the Pregnane X Receptor. Chemical Research in Toxicology, 2014, 27, 304-308.	1.7	28
332	Human DNA polymerase $\hat{\mathbf{l}}$ accommodates RNA for strand extension. Journal of Biological Chemistry, 2017, 292, 18044-18051.	1.6	28
333	Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. Journal of Biological Chemistry, 2017, 292, 13672-13687.	1.6	28
334	In Vitro Activation of Cytochrome P450 46A1 (CYP46A1) by Efavirenz-Related Compounds. Journal of Medicinal Chemistry, 2020, 63, 6477-6488.	2.9	28
335	Reaction of Trichloroethylene Oxide with Proteins and DNA:  Instability of Adducts and Modulation of Functions. Chemical Research in Toxicology, 2001, 14, 54-61.	1.7	27
336	OÂ6-Alkylguanine-DNA Alkyltransferase Has Opposing Effects in Modulating the Genotoxicity of Dibromomethane and Bromomethyl Acetate. Chemical Research in Toxicology, 2004, 17, 742-752.	1.7	27
337	Structure and Activity of Y-class DNA Polymerase DPO4 from Sulfolobus solfataricus with Templates Containing the Hydrophobic Thymine Analog 2,4-Difluorotoluene. Journal of Biological Chemistry, 2007, 282, 36421-36433.	1.6	27
338	Tandem Mass Spectrometry-Based Detection of C4′-Oxidized Abasic Sites at Specific Positions in DNA Fragments. Chemical Research in Toxicology, 2009, 22, 1310-1319.	1.7	27
339	Replication Past the N5-Methyl-Formamidopyrimidine Lesion of Deoxyguanosine by DNA Polymerases and an Improved Procedure for Sequence Analysis of in Vitro Bypass Products by Mass Spectrometry. Chemical Research in Toxicology, 2009, 22, 1086-1095.	1.7	27
340	The bis-Electrophile Diepoxybutane Cross-Links DNA to Human Histones but Does Not Result in Enhanced Mutagenesis in Recombinant Systems. Chemical Research in Toxicology, 2009, 22, 1069-1076.	1.7	27
341	Inter-individual Variation in Flavin-containing Monooxygenase 3 in Livers from Japanese: Correlation with Hepatic Transcription Factors. Drug Metabolism and Pharmacokinetics, 2009, 24, 218-225.	1.1	27
342	Approaches to deorphanization of human and microbial cytochrome P450 enzymes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 139-145.	1.1	27

#	Article	IF	CITATIONS
343	20-Hydroxyeicosatetraenoic Acid (HETE)-dependent Hypertension in Human Cytochrome P450 (CYP) 4A11 Transgenic Mice. Journal of Biological Chemistry, 2016, 291, 16904-16919.	1.6	27
344	The safety evaluation of food flavouring substances: the role of metabolic studies. Toxicology Research, 2018, 7, 618-646.	0.9	27
345	The Cytochrome P450 Slow Metabolizers CYP2C9*2 and CYP2C9*3 Directly Regulate Tumorigenesis via Reduced Epoxyeicosatrienoic Acid Production. Cancer Research, 2018, 78, 4865-4877.	0.4	27
346	Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. Journal of Steroid Biochemistry and Molecular Biology, 2020, 197, 105566.	1.2	27
347	Analysis of the Kinetic Mechanism of Haloalkane Conjugation by Mammalian Î,-Class Glutathione Transferases. Chemical Research in Toxicology, 2003, 16, 1493-1499.	1.7	26
348	Site Specific Synthesis and Polymerase Bypass of Oligonucleotides Containing a 6-Hydroxy-3,5,6,7-tetrahydro-9H-imidazo[1,2-a]purin-9-one Base, an Intermediate in the Formation of 1,N2-Etheno-2â€ ⁻ -deoxyguanosine. Chemical Research in Toxicology, 2005, 18, 1701-1714.	1.7	26
349	Spectral Modification and Catalytic Inhibition of Human Cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by Four Chemopreventive Organoselenium Compounds. Chemical Research in Toxicology, 2011, 24, 1327-1337.	1.7	26
350	New Trends in Cytochrome P450 Research at the Half-Century Mark. Journal of Biological Chemistry, 2013, 288, 17063-17064.	1.6	26
351	Steadyâ€State Kinetic Analysis of DNA Polymerase Singleâ€Nucleotide Incorporation Products. Current Protocols in Nucleic Acid Chemistry, 2014, 59, 7.21.1-13.	0.5	26
352	Simulation of Human Plasma Concentrations of Thalidomide and Primary 5-Hydroxylated Metabolites Explored with Pharmacokinetic Data in Humanized TK-NOG Mice. Chemical Research in Toxicology, 2015, 28, 2088-2090.	1.7	26
353	Thematic Series: Metals in Biology. Journal of Biological Chemistry, 2009, 284, 709.	1.6	25
354	Cytochrome P450 2S1 is Reduced by NADPH-Cytochrome P450 Reductase. Drug Metabolism and Disposition, 2011, 39, 944-946.	1.7	25
355	Isotope-Labeling Studies Support the Electrophilic Compound I Iron Active Species, FeO ³⁺ , for the Carbon–Carbon Bond Cleavage Reaction of the Cholesterol Side-Chain Cleavage Enzyme, Cytochrome P450 11A1. Journal of the American Chemical Society, 2016, 138, 12124-12141.	6.6	25
356	Polymerase Blockage and Misincorporation of dNTPs Opposite the Ethylene Dibromide-Derived DNA AdductsS-[2-(N7-Guanyl)ethyl]glutathione,S-[2-(N2-Guanyl)ethyl]glutathione, andS-[2-(O6-Guanyl)ethyl]glutathioneâ€. Chemical Research in Toxicology, 1998, 11, 311-316.	1.7	24
357	Use of genetically engineeredSalmonella typhimurium OY1002/1A2 strain coexpressing human cytochrome P450 1A2 and NADPH-cytochrome P450 reductase and bacterialO-acetyltransferase in SOS/umu assay. Environmental and Molecular Mutagenesis, 2000, 36, 121-126.	0.9	24
358	Activation of Alkyl Halides by Glutathione Transferases. Methods in Enzymology, 2005, 401, 342-353.	0.4	24
359	<i>In Vitro</i> Bypass of the Major Malondialdehyde- and Base Propenal-Derived DNA Adduct by Human Y-family DNA Polymerases l ^e , l ¹ , and Rev1. Biochemistry, 2010, 49, 8415-8424.	1.2	24
360	Comparison of the Inhibitory Profiles of Itraconazole and Cimetidine in Cytochrome P450 3A4 Genetic Variants. Drug Metabolism and Disposition, 2011, 39, 724-728.	1.7	24

#	Article	IF	CITATIONS
361	Liquid Chromatographyâ€Mass Spectrometry Analysis of DNA Polymerase Reaction Products. Current Protocols in Nucleic Acid Chemistry, 2011, 47, Unit 7.16.1-11.	0.5	24
362	Mechanism-based Inhibition Profiles of Erythromycin and Clarithromycin with Cytochrome P450 3A4 Genetic Variants. Drug Metabolism and Pharmacokinetics, 2013, 28, 411-415.	1.1	24
363	Roles of Human CYP2A6 and Monkey CYP2A24 and 2A26 Cytochrome P450 Enzymes in the Oxidation of 2,5,2′,5′-Tetrachlorobiphenyl. Drug Metabolism and Disposition, 2016, 44, 1899-1909.	1.7	24
364	Sulfenylation of Human Liver and Kidney Microsomal Cytochromes P450 and Other Drug-Metabolizing Enzymes as a Response to Redox Alteration. Molecular and Cellular Proteomics, 2018, 17, 889-900.	2.5	24
365	Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18-hydroxycorticosterone. Journal of Biological Chemistry, 2019, 294, 12975-12991.	1.6	24
366	Preparation and characterization of oligonucleotides containing S-[2-(N7-guanyl)ethyl]glutathione. Biochemistry, 1991, 30, 10513-10522.	1.2	23
367	Metabolic Activation of Benzo[c]phenanthrene by Cytochrome P450 Enzymes in Human Liver and Lung. Chemical Research in Toxicology, 2001, 14, 686-693.	1.7	23
368	Kinetics of Nucleotide Incorporation Opposite DNA Bulky Guanine N2 Adducts by Processive Bacteriophage T7 DNA Polymerase (Exonuclease–) and HIV-1 Reverse Transcriptase*. Journal of Biological Chemistry, 2005, 280, 1165-1178.	1.6	23
369	Life and Times in Biochemical Toxicology. International Journal of Toxicology, 2005, 24, 5-21.	0.6	23
370	Untargeted Analysis of Mass Spectrometry Data for Elucidation of Metabolites and Function of Enzymes. Analytical Chemistry, 2007, 79, 3355-3362.	3.2	23
371	Conformational Changes during Nucleotide Selection by Sulfolobus solfataricus DNA Polymerase Dpo4. Journal of Biological Chemistry, 2009, 284, 21090-21099.	1.6	23
372	Enhanced bacterial expression of several mammalian cytochrome P450s by codon optimization and chaperone coexpression. Biotechnology Letters, 2009, 31, 1589-1593.	1.1	23
373	Specificity of Protein Covalent Modification by the Electrophilic Proteasome Inhibitor Carfilzomib in Human Cells. Molecular and Cellular Proteomics, 2016, 15, 3233-3242.	2.5	23
374	Heme–thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. Journal of Biological Chemistry, 2017, 292, 11230-11242.	1.6	23
375	Inherent steroid 17α,20-lyase activity in defunct cytochrome P450 17A enzymes. Journal of Biological Chemistry, 2018, 293, 541-556.	1.6	23
376	FEMA GRAS assessment of natural flavor complexes: Mint, buchu, dill and caraway derived flavoring ingredients. Food and Chemical Toxicology, 2020, 135, 110870.	1.8	23
377	FEMA GRAS assessment of natural flavor complexes: Clove, cinnamon leaf and West Indian bay leaf-derived flavoring ingredients. Food and Chemical Toxicology, 2020, 145, 111585.	1.8	23
378	Mechanism of Formation of Ethenoguanine Adducts from 2-Haloacetaldehydes: 13C-Labeling Patterns with 2-Bromoacetaldehyde. Chemical Research in Toxicology, 1994, 7, 205-208.	1.7	22

#	Article	IF	CITATIONS
379	Active Site Topology of Human Cytochrome P450 2E1. Chemical Research in Toxicology, 1996, 9, 223-226.	1.7	22
380	Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries. Journal of Biotechnology, 2009, 139, 12-18.	1.9	22
381	Thematic Minireview Series: Metals in Biology 2012. Journal of Biological Chemistry, 2012, 287, 13508-13509.	1.6	22
382	Introduction: Metals in Biology: α-Ketoglutarate/Iron-Dependent Dioxygenases. Journal of Biological Chemistry, 2015, 290, 20700-20701.	1.6	22
383	WHAT MAKES P450s WORK? SEARCHES FOR ANSWERS WITH KNOWN AND NEW P450s*. Drug Metabolism Reviews, 2000, 32, 267-281.	1.5	21
384	Carcinogenesis of Urethane: Simulation versus Experiment. Chemical Research in Toxicology, 2015, 28, 691-701.	1.7	21
385	Structure–Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chemical Research in Toxicology, 2016, 29, 1029-1040.	1.7	21
386	Mechanisms of Insertion of dCTP and dTTP Opposite the DNA Lesion O6-Methyl-2′-deoxyguanosine by Human DNA Polymerase Î. Journal of Biological Chemistry, 2016, 291, 24304-24313.	1.6	21
387	Validation of Human Sterol 14α-Demethylase (CYP51) Druggability: Structure-Guided Design, Synthesis, and Evaluation of Stoichiometric, Functionally Irreversible Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 10391-10401.	2.9	21
388	A requirement for an active proton delivery network supports a compound I-mediated C–C bond cleavage in CYP51 catalysis. Journal of Biological Chemistry, 2020, 295, 9998-10007.	1.6	21
389	Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica, 2016, 46, 211-224.	0.5	20
390	Metabolic profiles of pomalidomide in human plasma simulated with pharmacokinetic data in control and humanized-liver mice. Xenobiotica, 2017, 47, 844-848.	0.5	20
391	Synthesis and Insertion, both in vivo and in vitro, of Rat-Liver Cytochrome P-450 and Epoxide Hydratase into Xenopus laevis Membranes. FEBS Journal, 1981, 115, 367-373.	0.2	19
392	Mechanisms of Formation of DNA Adducts from Ethylene Dihaudes, Vinyl Halides, and Arylamines. Drug Metabolism Reviews, 1994, 26, 47-66.	1.5	19
393	Elucidation of kinetic mechanisms of human translesion <scp>DNA</scp> polymerase κ using tryptophan mutants. FEBS Journal, 2014, 281, 4394-4410.	2.2	19
394	Hydroperoxy-10,12-Octadecadienoic Acid Stimulates Cytochrome P450 3A Protein Aggregation by a Mechanism That Is Inhibited by Substrateâ€. Biochemistry, 2003, 42, 12691-12699.	1.2	18
395	Kinetics of Nucleotide Incorporation Opposite Polycyclic Aromatic Hydrocarbonâ~'DNA Adducts by Processive Bacteriophage T7 DNA Polymerase. Chemical Research in Toxicology, 2005, 18, 389-400.	1.7	18
396	Biochemical Analysis of Six Genetic Variants of Error-Prone Human DNA Polymerase Î ¹ Involved in Translesion DNA Synthesis. Chemical Research in Toxicology, 2014, 27, 1837-1852.	1.7	18

#	Article	IF	CITATIONS
397	Sterol 14α-Demethylase Structure-Based Optimization of Drug Candidates for Human Infections with the Protozoan Trypanosomatidae. Journal of Medicinal Chemistry, 2018, 61, 10910-10921.	2.9	18
398	Tight binding of cytochrome b5 to cytochrome P450 17A1 is a critical feature of stimulation of C21 steroid lyase activity and androgen synthesis. Journal of Biological Chemistry, 2021, 296, 100571.	1.6	18
399	Fluorescencein situ hybridization analysis of chromosomal localization of three human cytochrome P450 2C genes (CYP2C8, 2C9, and 2C10) at 10q24.1. Japanese Journal of Human Genetics, 1994, 39, 337-343.	0.8	17
400	Tetrachloroethylene Oxide:Â Hydrolytic Products and Reactions with Phosphate and Lysine. Chemical Research in Toxicology, 2002, 15, 1096-1105.	1.7	17
401	Translesion Synthesis Across Polycyclic Aromatic Hydrocarbon Diol Epoxide Adducts of Deoxyadenosine by Sulfolobus solfataricus DNA Polymerase Dpo4. Chemical Research in Toxicology, 2006, 19, 859-867.	1.7	17
402	Frameshift Deletion by Sulfolobus solfataricus P2 DNA Polymerase Dpo4 T239W Is Selective for Purines and Involves Normal Conformational Change Followed by Slow Phosphodiester Bond Formation. Journal of Biological Chemistry, 2009, 284, 35144-35153.	1.6	17
403	High-throughput fluorescence assay of cytochrome P450 3A4. Nature Protocols, 2009, 4, 1258-1261.	5.5	17
404	Cataloging the Repertoire of Nature's Blowtorch, P450. Chemistry and Biology, 2009, 16, 1215-1216.	6.2	17
405	Oxidation and Glycolytic Cleavage of Etheno and Propano DNA Base Adducts. Biochemistry, 2009, 48, 800-809.	1.2	17
406	Translesion Synthesis across 1,N6-(2-Hydroxy-3-hydroxymethylpropan-1,3-diyl)-2′-deoxyadenosine (1,N6-γ-HMHP-dA) Adducts by Human and Archebacterial DNA Polymerases. Journal of Biological Chemistry, 2012, 287, 38800-38811.	1.6	17
407	Conjugation of Butadiene Diepoxide with Glutathione Yields DNA Adducts in Vitro and in Vivo. Chemical Research in Toxicology, 2012, 25, 706-712.	1.7	17
408	Detection and Characterization of 1,2â€Dibromoethaneâ€Derived DNA Crosslinks Formed with <i>O</i> ⁶ â€Alkylguanineâ€DNA Alkyltransferase. Angewandte Chemie - International Edition, 2013, 52, 12879-12882.	7.2	17
409	Oxidation of Acenaphthene and Acenaphthylene by Human Cytochrome P450 Enzymes. Chemical Research in Toxicology, 2015, 28, 268-278.	1.7	17
410	Research Resource: Correlating Human Cytochrome P450 21A2 Crystal Structure and Phenotypes of Mutations in Congenital Adrenal Hyperplasia. Molecular Endocrinology, 2015, 29, 1375-1384.	3.7	17
411	Polymerase Bypass of <i>N</i> ⁶ -Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene. Chemical Research in Toxicology, 2015, 28, 1496-1507.	1.7	17
412	Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2′-deoxyguanosine by the catalytic core of yeast DNA polymerase Î∙. Biochimie, 2016, 121, 161-169.	1.3	17
413	Safety evaluation of substituted thiophenes used as flavoring ingredients. Food and Chemical Toxicology, 2017, 99, 40-59.	1.8	17
414	7,8-benzoflavone binding to human cytochrome P450 3A4 reveals complex fluorescence quenching, suggesting binding at multiple protein sites. Journal of Biomolecular Structure and Dynamics, 2018, 36, 841-860.	2.0	17

#	Article	IF	CITATIONS
415	FEMA GRAS assessment of natural flavor complexes: Cinnamomum and Myroxylon-derived flavoring ingredients. Food and Chemical Toxicology, 2020, 135, 110949.	1.8	17
416	Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomolecules and Therapeutics, 2022, 30, 1-18.	1.1	17
417	S-(2-Chloroethyl)glutathione-generated p53 Mutation Spectra Are Influenced by Differential Repair Rates More than Sites of Initial DNA Damage. Journal of Biological Chemistry, 2004, 279, 13435-13446.	1.6	16
418	Thematic Minireview Series: Metals in Biology. Journal of Biological Chemistry, 2009, 284, 18557.	1.6	16
419	Binding of a physiological substrate causes large-scale conformational reorganization in cytochrome P450 51. Journal of Biological Chemistry, 2018, 293, 19344-19353.	1.6	16
420	Human Cytochromes P450 1A1 and 1B1 Catalyze Ring Oxidation but Not Nitroreduction of Environmental Pollutant Mononitropyrene Isomers in Primary Cultures of Human Breast Cells and Cultured MCF-10A and MCF-7 Cell Lines. Chemical Research in Toxicology, 2004, 17, 1077-1085.	1.7	15
421	Structure of the 1,N2-Etheno-2′-Deoxyguanosine Adduct in Duplex DNA at pH 8.6. Chemical Research in Toxicology, 2007, 20, 1601-1611.	1.7	15
422	Structure of the 1,N2-Ethenodeoxyguanosine Adduct Opposite Cytosine in Duplex DNA: Hoogsteen Base Pairing at pH 5.2. Chemical Research in Toxicology, 2008, 21, 1795-1805.	1.7	15
423	Translesion DNA Synthesis by Human DNA Polymerase Î∙ on Templates Containing a Pyrimidopurinone Deoxyguanosine Adduct, 3-(2′-Deoxy-β-d-erythro-pentofuranosyl)pyrimido-[1,2-a]purin-10(3H)-one. Biochemistry, 2009, 48, 471-480.	1.2	15
424	Selective Modulation of DNA Polymerase Activity by Fixedâ€Conformation Nucleoside Analogues. Angewandte Chemie - International Edition, 2010, 49, 7481-7485.	7.2	15
425	Replication of the 2,6-Diamino-4-hydroxy- <i>N</i> ⁵ -(methyl)-formamidopyrimidine (MeFapy-dGuo) Adduct by Eukaryotic DNA Polymerases. Chemical Research in Toxicology, 2012, 25, 1652-1661.	1.7	15
426	Assessment of Protein Binding of 5-Hydroxythalidomide Bioactivated in Humanized Mice with Human <i>P450 3A</i> -Chromosome or Hepatocytes by Two-Dimensional Electrophoresis/Accelerator Mass Spectrometry. Chemical Research in Toxicology, 2016, 29, 1279-1281.	1.7	15
427	The abundant DNA adduct N7-methyl deoxyguanosine contributes to miscoding during replication by human DNA polymerase η. Journal of Biological Chemistry, 2019, 294, 10253-10265.	1.6	15
428	Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone. Xenobiotica, 2019, 49, 131-142.	0.5	15
429	Metabolism and Interactions of Chloroquine and Hydroxychloroquine with Human Cytochrome P450 Enzymes and Drug Transporters. Current Drug Metabolism, 2020, 21, 1127-1135.	0.7	15
430	Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Archives of Toxicology, 2022, 96, 2145-2246.	1.9	15
431	Cytochrome <i>P</i> -450 enzymes involved in genetic polymorphism of drug oxidation in humans. Biochemical Society Transactions, 1987, 15, 576-578.	1.6	14
432	Synthesis of Oligonucleotides Containing the Ethylene Dibromide-Derived DNA AdductsS-[2-(N7-Guanyl)ethyl]glutathione,S-[2-(N2-Guanyl)ethyl]glutathione, andS-[2-(O6-Guanyl)ethyl]glutathione at a Single Siteâ€. Chemical Research in Toxicology, 1997, 10, 1133-1143.	1.7	14

#	Article	IF	CITATIONS
433	Purification of Cytochromes P450: <i>Products of Bacterial Recombinant Expression Systems</i> , 2006, 320, 31-38.		14
434	Limited Reactivity of Formyl Chloride with Glutathione and Relevance to Metabolism and Toxicity of Dichloromethane. Chemical Research in Toxicology, 2006, 19, 1091-1096.	1.7	14
435	Replication past the Butadiene Diepoxide-Derived DNA Adduct <i>S</i> -[4-(<i>N</i> ⁶ -Deoxyadenosinyl)-2,3-dihydroxybutyl]glutathione by DNA Polymerases. Chemical Research in Toxicology, 2013, 26, 1005-1013.	1.7	14
436	Biochemical Characterization of Eight Genetic Variants of Human DNA Polymerase κ Involved in Error-Free Bypass across Bulky N2-Guanyl DNA Adducts. Chemical Research in Toxicology, 2014, 27, 919-930.	1.7	14
437	FEMA GRAS assessment of natural flavor complexes: Lavender, Guaiac Coriander-derived and related flavoring ingredients. Food and Chemical Toxicology, 2020, 145, 111584.	1.8	14
438	N-Nitroso-N-methylvinylamine: Reaction of the epoxide with guanyl and adenyl moieties to yield adducts derived from both parts of the molecule. Chemical Research in Toxicology, 1993, 6, 168-173.	1.7	13
439	Structure of the Aflatoxin B1Dialdehyde Adduct Formed from Reaction with Methylamine. Chemical Research in Toxicology, 2002, 15, 793-798.	1.7	13
440	Cooperativity of cytochrome P450 1A2: Interactions of 1,4-phenylene diisocyanide and 1-isopropoxy-4-nitrobenzene. Archives of Biochemistry and Biophysics, 2008, 473, 69-75.	1.4	13
441	Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants. Xenobiotica, 2018, 48, 565-575.	0.5	13
442	Protective Role of Glutathione against Peroxynitrite-Mediated DNA Damage During Acute Inflammation. Chemical Research in Toxicology, 2020, 33, 2668-2674.	1.7	13
443	Generation of reactive intermediates. Journal of Biochemical and Molecular Toxicology, 2005, 19, 173-174.	1.4	12
444	A tricistronic human adrenodoxin reductase-adrenodoxin–cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli. Protein Expression and Purification, 2011, 79, 231-236.	0.6	12
445	Targeting of Splice Variants of Human Cytochrome P450 2C8 (CYP2C8) to Mitochondria and Their Role in Arachidonic Acid Metabolism and Respiratory Dysfunction. Journal of Biological Chemistry, 2014, 289, 29614-29630.	1.6	12
446	Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct 1,N6-Ethenodeoxyadenosine by Human Translesion DNA Polymerase Ⅰ̂. Journal of Biological Chemistry, 2016, 291, 14134-14145.	1.6	12
447	Effects of Twelve Germline Missense Variations on DNA Lesion and G-Quadruplex Bypass Activities of Human DNA Polymerase REV1. Chemical Research in Toxicology, 2016, 29, 367-379.	1.7	12
448	Induction of human cytochrome P450 3A enzymes in cultured placental cells by thalidomide and relevance to bioactivation and toxicity. Journal of Toxicological Sciences, 2017, 42, 343-348.	0.7	12
449	A Role for the Orphan Human Cytochrome P450 2S1 in Polyunsaturated Fatty Acid <i>ï‰</i> -1 Hydroxylation Using an Untargeted Metabolomic Approach. Drug Metabolism and Disposition, 2019, 47, 1325-1332.	1.7	12
450	FEMA GRAS assessment of natural flavor complexes: Eucalyptus oil and other cyclic ether-containing flavoring ingredients. Food and Chemical Toxicology, 2021, 155, 112357.	1.8	12

#	Article	IF	CITATIONS
451	Purification of Cytochromes P450: Products of Bacterial Recombinant Expression Systems. , 1998, 107, 77-84.		11
452	Modified nicotine metabolism in transgenic tobacco plants expressing the human cytochrome P450 2A6 cDNA. FEBS Letters, 2005, 579, 2480-2484.	1.3	11
453	Metal-ion dependence of the active-site conformation of the translesion DNA polymerase Dpo4 from <i>Sulfolobus solfataricus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1013-1018.	0.7	11
454	Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase \hat{l}^1 . Journal of Biological Chemistry, 2016, 291, 21063-21073.	1.6	11
455	Association of pharmacokinetic profiles of lenalidomide in human plasma simulated using pharmacokinetic data in humanized-liver mice with liver toxicity detected by human serum albumin RNA. Journal of Toxicological Sciences, 2018, 43, 369-375.	0.7	11
456	Oxidation of Flavone, 5-Hydroxyflavone, and 5,7-Dihydroxyflavone to Mono-, Di-, and Tri-Hydroxyflavones by Human Cytochrome P450 Enzymes. Chemical Research in Toxicology, 2019, 32, 1268-1280.	1.7	11
457	Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. Advances in Pharmacology, 2022, , 1-47.	1.2	11
458	Enantioselective hydrolysis of oxazepam 3-acetate by esterases in human and rat liver microsomes and rat brain s9 fraction. Chirality, 1990, 2, 150-155.	1.3	10
459	Immunohistochemical demonstration of ?-naphthoflavone-inducible cytochrome P450 1A1/1A2 in rat intrahepatic biliary epithelial cells. Hepatology, 1998, 27, 1483-1491.	3.6	10
460	Cytochrome P450. , 2002, , 33-65.		10
461	Structure of the 1, <i>N</i> ² -Etheno-2′-deoxyguanosine Lesion in the 3′-G(εdG)T-5′ Sequer Opposite a One-Base Deletion. Biochemistry, 2010, 49, 2615-2626.	nce 1.2	10
462	Thematic Minireview Series: Metals in Biology 2013. Journal of Biological Chemistry, 2013, 288, 13164.	1.6	10
463	Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor. Archives of Biochemistry and Biophysics, 2013, 530, 101-107.	1.4	10
464	Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes. Xenobiotica, 2019, 49, 791-802.	0.5	10
465	Mitochondrially targeted cytochrome P450 2D6 is involved in monomethylamine-induced neuronal damage in mouse models. Journal of Biological Chemistry, 2019, 294, 10336-10348.	1.6	10
466	Methylene Oxidation of Alkyl Sulfates by Cytochrome P450BM-3and a Role for Conformational Selection in Substrate Recognition. ACS Catalysis, 2020, 10, 5008-5022.	5.5	10
467	Kinetics of cytochrome P450 3A4 inhibition by heterocyclic drugs defines a general sequential multistep binding process. Journal of Biological Chemistry, 2021, 296, 100223.	1.6	10
468	Intralobular distribution and quantitation of cytochrome P-450 enzymes in human liver as a function of age. Hepatology, 1991, 13, 1142-1151.	3.6	10

#	Article	IF	CITATIONS
469	Interactions of N7-guanyl methyl- and thioether-substituted d(CATGCCT) derivatives with d(AGGNATG). Chemical Research in Toxicology, 1993, 6, 900-905.	1.7	9
470	Where is Toxicology Headed in the Future?. Drug Metabolism Reviews, 2004, 36, 475-486.	1.5	9
471	Mechanistic Studies with DNA Polymerases Reveal Complex Outcomes following Bypass of DNA Damage. Journal of Nucleic Acids, 2010, 2010, 1-12.	0.8	9
472	The C8-2′-Deoxyguanosine Adduct of 2-Amino-3-methylimidazo[1,2- <i>d</i>]naphthalene, a Carbocyclic Analogue of the Potent Mutagen 2-Amino-3-methylimidazo[4,5- <i>f</i>]quinoline, Is a Block to Replication in Vitro. Chemical Research in Toxicology, 2010, 23, 1076-1088.	1.7	9
473	Identification of Endogenous Substrates of Orphan Cytochrome P450 Enzymes Through the Use of Untargeted Metabolomics Approaches. Methods in Molecular Biology, 2013, 987, 71-77.	0.4	9
474	FEMA expert panel review of p -mentha-1,8-dien-7-al genotoxicity testing results. Food and Chemical Toxicology, 2016, 98, 201-209.	1.8	9
475	Six Germline Genetic Variations Impair the Translesion Synthesis Activity of Human DNA Polymerase κ. Chemical Research in Toxicology, 2016, 29, 1741-1754.	1.7	9
476	lsotopic tagging of oxidized and reduced cysteines (iTORC) for detecting and quantifying sulfenic acids, disulfides, and free thiols in cells. Journal of Biological Chemistry, 2019, 294, 6522-6530.	1.6	9
477	Comparison of the inhibitory effects of azole antifungals on cytochrome P450 3A4 genetic variants. Drug Metabolism and Pharmacokinetics, 2021, 38, 100384.	1.1	9
478	Cellular retinoid-binding proteins transfer retinoids to human cytochrome P450 27C1 for desaturation. Journal of Biological Chemistry, 2021, 297, 101142.	1.6	9
479	Oxidative, Reductive, and Hydrolytic Metabolism of Drugs. , 0, , 15-35.		9
480	Effect of Alterations of Key Active Site Residues inO6-Alkylguanine-DNA Alkyltransferase on Its Ability To Modulate the Genotoxicity of 1,2-Dibromoethane. Chemical Research in Toxicology, 2007, 20, 155-163.	1.7	8
481	Thematic Minireview Series: Metals in Biology 2010. Journal of Biological Chemistry, 2010, 285, 26727.	1.6	8
482	Comparison of the in Vitro Replication of the 7-(2-Oxoheptyl)-1, <i>N</i> ² -etheno-2′-deoxyguanosine and 1, <i>N</i> ² -Etheno-2′-deoxyguanosine Lesions by <i>Sulfolobus solfataricus</i> P2 DNA Polymerase IV (Dpo4). Chemical Research in Toxicology, 2010, 23, 1330-1341.	1.7	8
483	Effects of <i>N</i> ² -Alkylguanine, <i>O</i> ⁶ -Alkylguanine, and Abasic Lesions on DNA Binding and Bypass Synthesis by the Euryarchaeal B-Family DNA Polymerase Vent (exo [–]). Chemical Research in Toxicology, 2012, 25, 1699-1707.	1.7	8
484	Time- and NADPH-Dependent Inhibition of Cytochrome P450 3A4 by the Cyclopentapeptide Cilengitide: Significance of the Guanidine Group and Accompanying Spectral Changes. Drug Metabolism and Disposition, 2014, 42, 1438-1446.	1.7	8
485	Thematic Minireview Series: Metals in Biology 2014. Journal of Biological Chemistry, 2014, 289, 28094.	1.6	8
486	Preference for <i>O</i> -demethylation reactions in the oxidation of 2′-, 3′-, and 4′-methoxyflavones by human cytochrome P450 enzymes. Xenobiotica, 2020, 50, 1158-1169.	0.5	8

#	Article	IF	CITATIONS
487	Stepwise binding of inhibitors to human cytochrome P450 17A1 and rapid kinetics of inhibition of androgen biosynthesis. Journal of Biological Chemistry, 2021, 297, 100969.	1.6	8
488	Kinetic Evidence for an Induced-Fit Mechanism in the Binding of the Substrate Camphor by Cytochrome P450 _{cam} . ACS Catalysis, 2021, 11, 639-649.	5.5	8
489	Nucleophilic Thiol Proteins Bind Covalently to Abasic Sites in DNA. Chemical Research in Toxicology, 2022, 35, 1805-1808.	1.7	8
490	Replication, Repair, and Translesion Polymerase Bypass of N6-Oxopropenyl-2′-deoxyadenosine. Biochemistry, 2013, 52, 8766-8776.	1.2	7
491	Metals in Biology 2016: Molecular Basis of Selection of Metals by Enzymes. Journal of Biological Chemistry, 2016, 291, 20838-20839.	1.6	7
492	Kinetic Modeling of Steady-State Situations in Cytochrome P450 Enzyme Reactions. Drug Metabolism and Disposition, 2019, 47, 1232-1239.	1.7	7
493	Multistep Binding of the Non-Steroidal Inhibitors Orteronel and Seviteronel to Human Cytochrome P450 17A1 and Relevance to Inhibition of Enzyme Activity. Journal of Medicinal Chemistry, 2020, 63, 6513-6522.	2.9	7
494	Enzymatic bypass of an N6-deoxyadenosine DNA–ethylene dibromide–peptide cross-link by translesion DNA polymerases. Journal of Biological Chemistry, 2021, 296, 100444.	1.6	7
495	Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin. Archives of Biochemistry and Biophysics, 2021, 714, 109076.	1.4	7
496	THE VANDERBILT UNIVERSITY CENTER IN MOLECULAR TOXICOLOGY: THE FIRST 30 YEARS. Drug Metabolism Reviews, 1999, 31, 1-11.	1.5	6
497	Microsomal Oxidation of Tribromoethylene and Reactions of Tribromoethylene Oxide. Chemical Research in Toxicology, 2002, 15, 1414-1420.	1.7	6
498	Drug Metabolism as Catalyzed by Human Cytochrome P450 Systems. , 2007, , 561-589.		6
499	Structure and function of the translesion DNA polymerases and interactions with damaged DNA. Perspectives in Science, 2015, 4, 24-31.	0.6	6
500	Preâ€Steadyâ€State Kinetic Analysis of Singleâ€Nucleotide Incorporation by DNA Polymerases. Current Protocols in Nucleic Acid Chemistry, 2016, 65, 7.23.1-7.23.10.	0.5	6
501	Functional interactions of adrenodoxin with several human mitochondrial cytochrome P450 enzymes. Archives of Biochemistry and Biophysics, 2020, 694, 108596.	1.4	6
502	Impact of 1,N6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. Journal of Biological Chemistry, 2020, 295, 6092-6107.	1.6	6
503	Roles of cytochrome P450 2A6 in the oxidation of flavone, 4′-hydroxyflavone, and 4′-, 3′-, and 2′-methoxyflavones by human liver microsomes. Xenobiotica, 2021, 51, 995-1009.	0.5	6
504	FEMA GRAS assessment of natural flavor complexes: Origanum oil, thyme oil and related phenol derivative-containing flavoring ingredients. Food and Chemical Toxicology, 2021, 155, 112378.	1.8	6

#	Article	IF	CITATIONS
505	DNA polymerases η and κ bypass N2-guanine-O6-alkylguanine DNA alkyltransferase cross-linked DNA-peptides. Journal of Biological Chemistry, 2021, 297, 101124.	1.6	6
506	Enzymatic bypass and the structural basis of miscoding opposite the DNA adduct 1,N2-ethenodeoxyguanosine by human DNA translesion polymerase Ε. Journal of Biological Chemistry, 2021, 296, 100642.	1.6	6
507	Factors involved in the regulation of the levels and activities of rat liver cytochromes <i>P</i> -450. Biochemical Society Transactions, 1984, 12, 68-70.	1.6	5
508	Evolution of the Scientific Literature of Cytochrome P450 from 1977 to 2008. Current Drug Metabolism, 2010, 11, 162-170.	0.7	5
509	<i>In Vivo</i> Roles of Conjugation with Glutathione and <i>O</i> ⁶ -Alkylguanine DNA-Alkyltransferase in the Mutagenicity of the Bis-Electrophiles 1,2-Dibromoethane and 1,2,3,4-Diepoxybutane in Mice. Chemical Research in Toxicology, 2013, 26, 1765-1774.	1.7	5
510	Introduction: Metals in Biology. Journal of Biological Chemistry, 2015, 290, 18943-18944.	1.6	5
511	Synthesis and Characterization of Siteâ€Specific <i>O</i> ⁶ â€Alkylguanine DNAâ€Alkyl Transferaseâ€Oligonucleotide Crosslinks. Current Protocols in Nucleic Acid Chemistry, 2019, 76, e74.	0.5	5
512	Clutamine-451 Confers Sensitivity to Oxidative Inhibition and Heme-Thiolate Sulfenylation of Cytochrome P450 4B1. Chemical Research in Toxicology, 2019, 32, 484-492.	1.7	5
513	Characterization of human adrenal cytochrome P450 11B2 products of progesterone and androstenedione oxidation. Journal of Steroid Biochemistry and Molecular Biology, 2021, 208, 105787.	1.2	5
514	Cytochrome <i>b</i> ₅ Binds Tightly to Several Human Cytochrome P450 Enzymes. Drug Metabolism and Disposition, 2021, 49, 902-909.	1.7	5
515	Bypass DNA Polymerases. , 2011, , 345-373.		5
516	Fifty Years of Progress in Drug Metabolism and Toxicology: What Do We Still Need to Know About Cytochrome P450 Enzymes?. , 2014, , 17-41.		5
517	Roles of Cytochrome P450 1A1 and 1B1 in Metabolic Activation of Dibenzo[a, l]Pyrene by Microsomes from the Human Mammary Carcinoma Cell Line MCF-7. Polycyclic Aromatic Compounds, 2000, 16, 109-118.	1.4	4
518	Cytochrome P450 Activation of Toxins and Hepatotoxicity. , 2013, , 15-33.		4
519	Toxicology Strategies for Drug Discovery - Present and Future: Introduction. Chemical Research in Toxicology, 2016, 29, 437-437.	1.7	4
520	Formation of <i>S</i> -[2-(<i>N</i> ⁶ -Deoxyadenosinyl)ethyl]glutathione in DNA and Replication Past the Adduct by Translesion DNA Polymerases. Chemical Research in Toxicology, 2017, 30, 1188-1196.	1.7	4
521	Liquid chromatography-tandem mass spectrometry analysis of oxidation of 2′-, 3′-, 4′- and 6-hydroxyflavanones by human cytochrome P450 enzymes. Xenobiotica, 2021, 51, 139-154.	0.5	4
522	Etheno adducts: from tRNA modifications to DNA adducts and back to miscoding ribonucleotides. Genes and Environment, 2021, 43, 24.	0.9	4

#	Article	IF	CITATIONS
523	Drug Metabolism: Cytochrome P450. , 2021, , .		4
524	Metabolic Activation of Chrysene by Human Hepatic and Pulmonary Cytochrome P450 Enzymes. Polycyclic Aromatic Compounds, 1996, 10, 59-66.	1.4	3
525	Use of heterologously-expressed cytochrome P450 and glutathione transferase enzymes in toxicity assays. Toxicology, 2002, 181-182, 261-264.	2.0	3
526	Thematic Minireview Series on Biological Applications of Mass Spectrometry. Journal of Biological Chemistry, 2011, 286, 25417.	1.6	3
527	Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase Î opposite Intrastrand Cross-Linked DNA. Biochemistry, 2015, 54, 7449-7456.	1.2	3
528	Three Human Pol Î ¹ Variants with Impaired Polymerase Activity Fail to Rescue H ₂ O ₂ Sensitivity in <i>POLI</i> -Deficient Cells. Chemical Research in Toxicology, 2020, 33, 2120-2129.	1.7	3
529	Introduction to Metals in Biology 2017: Iron transport, storage, and the ramifications. Journal of Biological Chemistry, 2017, 292, 12725-12726.	1.6	2
530	Happy centennial birthday to Herb Tabor, pillar of JBC. Journal of Biological Chemistry, 2018, 293, 18803.	1.6	2
531	Introduction: Drug Metabolism and Toxicology Special Issue. Journal of Medicinal Chemistry, 2020, 63, 6249-6250.	2.9	2
532	Relaxed Substrate Requirements of Sterol 14α-Demethylase from <i>Naegleria fowleri</i> Are Accompanied by Resistance to Inhibition. Journal of Medicinal Chemistry, 2021, 64, 17511-17522.	2.9	2
533	Competing Reactions of Aflatoxin B1 Dialdehyde: Enzymatic Reduction versus Adduction with Lysine. ACS Symposium Series, 2003, , 171-182.	0.5	1
534	Selective Modulation of DNA Polymerase Activity by Fixedâ€Conformation Nucleoside Analogues. Angewandte Chemie, 2010, 122, 7643-7647.	1.6	1
535	High-Throughput Fluorescence Assay of Cytochrome P450 3A4. Methods in Molecular Biology, 2013, 987, 157-162.	0.4	1
536	Celebrating the scientific legacy of Herbert Tabor. Journal of Biological Chemistry, 2019, 294, 1635-1637.	1.6	1
537	Cytochrome P450 Metabolism Leads to Novel Biological Sterols and Other Steroids. , 2020, , 145-171.		1
538	Discovery of a role for cytochrome b5 in cytochrome P450 reactions. Archives of Biochemistry and Biophysics, 2022, , 109177.	1.4	1
539	Oxidation of 3´-methoxyflavone, 4´-methoxyflavone, and 3´,4´-dimethoxyflavone and their derivatives having 5,7-dihydroxyl moieties by human cytochromes P450 1B1 and 2A13. Xenobiotica, 2022, , 1-41.	0.5	1

How I became a biochemist. IUBMB Life, 2005, 57, 705-707.

1.5 0

#	Article	IF	CITATIONS
541	Characterization of Thioetherâ€Linked Protein Adducts of DNA Using a Raneyâ€Niâ€Mediated Desulfurization Method and Liquid Chromatographyâ€Electrosprayâ€Tandem Mass Spectrometry. Current Protocols in Nucleic Acid Chemistry, 2015, 60, 10.15.1-10.15.14.	0.5	0
542	Introduction to Thematic Series: Protein Interactions, Structures, and Networks. Journal of Biological Chemistry, 2015, 290, 26393-26394.	1.6	0
543	Judy L. Bolton, 1962–2019. Chemical Research in Toxicology, 2019, 32, 944-945.	1.7	0
544	Drug Metabolism and Toxicology Special Issue Call for Papers. Journal of Medicinal Chemistry, 2019, 62, 1077-1077.	2.9	0
545	Cytochrome P450 Catalysis in the Biosynthesis of Natural Products. , 2020, , 96-113.		0
546	OBSOLETE: Drug Metabolism: Cytochrome P450. , 2021, , .		0
547	Efficient and High Fidelity Incorporation of dCTP Opposite 7,8â€Dihydroâ€8â€oxodeoxyguanosine by Sulfolobus solfataricus DNA Polymerase Dpo4. FASEB Journal, 2006, 20, A39.	0.2	0
548	Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4 and relevance to substrate cooperativity. FASEB Journal, 2006, 20, A458.	0.2	0
549	Inhibition of Human Cytochrome P450 2D6 by Schering 66712. FASEB Journal, 2007, 21, A670.	0.2	0
550	The role of Arg332 in Dpo4â€catalyzed bypass of 7,8â€dihydroâ€2′â€oxodeoxyguanosine. FASEB Journal, 200 A272.)7, <u>21</u> , 0.2	0
551	Mechanismâ€Based Inhibition of Human Cytochrome P450 2D6 by Schering 66712. FASEB Journal, 2010, 24, 512.3.	0.2	0
552	Synthesis of Modified Oligonucleotides. , 2014, , 1-2.		0
553	Direct Enzymatic Reversal of DNA Damage. , 2014, , 1-3.		0
554	Modes of DNA Base Pairing. , 2014, , 1-4.		0
555	MECHANISM OF <i>N</i> -OXIDATION REACTION CATALYZED BY CYTOCHROME P-450. Drug Metabolism and Pharmacokinetics, 1994, 9, 172-175.	0.0	0
556	Metabolic Activation of Procarcinogens by Human Cytochrome P450 Enzymes in Microsomes of Adult and Fetal Livers and of Adult Lungs. Drug Metabolism and Pharmacokinetics, 1995, 10, 126-129.	0.0	0
557	OMEPRAZOLE HYDROXYLATION BY CYP2C19 AND CYP3A4: PREDICTION TOWARDS HUMAN LIVER ACTIVITIES USING THE DATA OF RECOMBINANT P450 ENZYMES. Drug Metabolism and Pharmacokinetics, 1997, 12, 120-121.	0.0	0
558	DISCOVERIES IN BASIC ENZYMOLOGY AND APPLICATIONS TO PROBLEMS IN DRUG METABOLISM AND TOXICOLOGY. Drug Metabolism and Pharmacokinetics, 1997, 12, 60-63.	0.0	0